
Civil Engineering and Applied Solutions, 2025; 1(2): 1-13 
 

 

* Corresponding author. 

E-mail addresses: m-naghi@nit.ac.ir (M. Naghipour). 

 

https://doi.org/10.22080/ceas.2025.29200.1011 

ISSN: 3092-7749/© 2025 The Author(s). Published by University of Mazandaran. 

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license 

(https://creativecommons.org/licenses/by/4.0/deed.en) 

How to cite this article: Salari ,A., Naghipour, M. Experimental study of circular concrete column confined with hybrid FRP-steel tube under 

axial load. Civil Engineering and Applied Solutions. 2025; 1(2): 1–13. doi:10.22080/ceas.2025.29200.1011. 

 

 

 Civil Engineering and Applied Solutions 
Research Article 
journal homepage: ceas.journals.umz.ac.ir 

Experimental Study of Circular Concrete Column Confined with Hybrid FRP-Steel 

Tube Under Axial Load 

Abolghasem Salari a, Morteza Naghipour a* 

a Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran 

A  B  S  T  R  A  C  T 
 

A  R  T  I  C  L  E I  N  F  O 

This study investigates the axial compressive behavior of circular concrete columns 

confined using three methods: steel tube confinement, FRP confinement, and hybrid FRP–

steel tube confinement. Specimens were designed with similar confinement ratios to allow 

fair evaluation of their mechanical performance. Experimental results showed that while 

the type of confinement had little effect on initial stiffness, it significantly influenced the 

post-peak behavior. Steel confinement offered the highest strength and ductility, while 

FRP confinement increased ultimate strain but failed abruptly due to brittle rupture. The 

hybrid system exhibited a staged failure mechanism with improved confinement 

efficiency and a balance between strength and ductility. Stress–strain curves, volumetric 

strain trends, and tangent Poisson’s ratio analyses highlighted the superior performance 

of hybrid systems. The findings suggest that hybrid FRP–steel confinement is a promising 

solution for enhancing both strength and deformation capacity in reinforced concrete 

columns, especially in seismic or high-performance structural applications. 
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1. Introduction 

Concrete is one of the most widely used materials in structural engineering due to its high compressive strength, availability, 

and cost-effectiveness. However, its brittle nature and low tensile capacity make it vulnerable to axial loads, especially in seismic 

zones or heavily loaded structures. To overcome these limitations, various confinement techniques have been developed to enhance 

the mechanical performance of concrete elements, particularly columns. When an axial compressive force is applied to a concrete 

column, lateral expansion occurs due to the Poisson effect. Introducing a confining material restricts this expansion and induces 

lateral pressure on the core, transforming the stress state of the concrete from uniaxial to triaxial. As a result, confined concrete 

exhibits improved energy absorption and deformation capacity. 

One of the earliest and most influential models in this field was proposed by Richartet al. [1] through experimental investigations 

on concrete cylinders under combined compressive stresses. Their study demonstrated that applying lateral confining pressure 

significantly increases the axial compressive strength of concrete. Building on this, Newman and Newman [2] proposed a more 

realistic basis for design, especially in situations involving moderate to high levels of active confinement. A significant advancement 

came with the work of Mander et al. [3], who proposed a widely used stress–strain model for steel-confined concrete that effectively 

captures strength and ductility improvements, especially in seismic applications. Han et al. [4] highlighted the significant influence 

of geometry and loading conditions on the confinement efficiency of steel tube-confined stub columns under localized axial loads. 

Liu et al. [5] confirmed that steel tubes provide effective lateral confinement, significantly enhancing the strength and ductility of 

CTRC columns. Qi et al. [6] emphasized the influence of geometry, showing that thicker tube walls and shorter column heights 

improve confinement by reducing buckling and increasing lateral restraint. Lin et al. [7] found that in circular concrete-filled steel 

tube columns, confinement effectiveness and compressive strength depend on the stress path at low confinement levels, but become 

path-independent as confinement increases. Xiamuxi et al. [8] investigated the effect of steel tube wall thickness on the axial 
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compression behavior of square columns filled with reinforced and recycled aggregate concrete. They found that increasing wall 

thickness enhances confinement, improves load-bearing capacity, and delays failure, underscoring the importance of steel tube 

confinement in structural performance. Cao et al. [9] showed that steel tube confinement enhances concrete durability by reducing 

sulfate penetration and cracking. 

While steel confinement offers reliable confinement capacity, FRP has emerged as a promising alternative. Kurt [10] found that 

PVC tubes offered minimal confinement due to low stiffness, while Harmon [11] showed that FRP tubes (CFRP and GFRP) 

provided effective confinement, with bilinear stress–strain behavior influenced by fiber volume ratio. Lam et al. [12] studied the 

axial behavior of FRP-confined concrete under cyclic and monotonic compression. Their results showed that cyclic loading had 

minimal effect on the stress–strain curve envelope but caused a slight increase in ultimate axial strain. Berthet et al. [13] developed 

a model for FRP-confined concrete, showing that confinement efficiency depends on hoop behavior, concrete strength, and stiffness. 

Li et al. [14] found that fiber orientation significantly affects confinement efficiency. Hoop-aligned fibers (90°) provided the best 

strength and ductility, while axial (0°) and angled (45°) orientations led to earlier or mixed-mode failures, highlighting the 

importance of hoop-direction reinforcement. Toutanji et al. [15] showed that the axial strength of FRP-confined concrete columns 

increases with FRP jacket thickness and tensile strength. Elsanadedy et al. [16] investigated size effects in FRP-confined concrete 

and found that larger column diameters reduced compressive strength in unconfined concrete, though the effect was less pronounced 

in confined specimens. Yang et al. [17] developed an ultrasonic method to monitor damage in FRP-confined concrete, effectively 

detecting stiffness loss and rupture zones. Zheng et al. [18] identified the Wei and Wu model as the most accurate for predicting 

ultimate axial strain in FRP-confined non-circular columns. 

While FRP confinement can significantly enhance axial capacity, its brittle failure mode often leads to sudden loss of 

confinement and abrupt column collapse. In contrast, steel tube confinement provides more gradual failure due to its elastic–plastic 

behavior and sustained lateral pressure after yielding. However, steel systems are vulnerable to issues such as corrosion and 

increased weight, limiting their long-term durability. Xiao et al. [19] demonstrated that combining steel tubes with external FRP 

layers improves strength, ductility, and seismic performance in concrete-filled steel tubular (CFT) column systems, though a gap 

between layers can delay FRP activation—underscoring the need for careful interface detailing. Feng et al. [20] showed that 

combining steel tubes with FRP-confined cores improves confinement, ductility, and residual strength in composite columns. Ma 

et al. [21] used the XGBoost algorithm to accurately predict the axial strength of CFRP-confined CFT columns. Their model 

outperformed other machine learning methods, achieving high accuracy (R² = 0.9850) after optimization. Liu et al. [22] proposed a 

machine learning-based framework using synthetic data to predict and optimize the axial strength of FRP-reinforced CFT columns. 

The model, combined with genetic algorithm optimization, outperformed traditional design methods and supports the efficient 

design of FRP-confined CFT systems. 

To overcome the limitations of single-material confinement systems, this study investigates a hybrid FRP–steel tube confinement 

approach combining an inner steel tube with an outer FRP wrap. The experimental program included four groups of cylindrical 

specimens: unconfined concrete, steel tube-confined, FRP-confined, and hybrid FRP–steel tube-confined. All specimens were cast 

from a single concrete batch and designed with comparable confinement ratios to enable fair comparisons. Axial compression tests 

were conducted using a 200-ton capacity machine, with strain gauges and LVDTs installed to measure lateral and axial deformation. 

The hybrid system was designed to exploit the ductility of steel and the strength and corrosion resistance of FRP. This configuration 

aims to enhance compressive strength, ductility, and post-peak behavior while delaying brittle failure. The results are compared to 

assess the hybrid system’s efficiency relative to steel- and FRP-only confinement 

2. Experimental phase 

2.1. Specimens 

Four types of specimens were prepared: 1. Unconfined concrete cylinders (Group R-control samples), 2. Steel tube-confined 

cylinders (Group S), 3. FRP-confined cylinders (Group F), and 4-Hybrid steel + FRP-confined cylinders (Group SF). Each group 

consisted of multiple identical specimens; all cast from a single concrete batch to ensure uniformity. Fig. 1 shows the geometric 

properties of specimens. Each cylinder had a core diameter of 55 mm and a height of 140–150 mm, producing height-to-diameter 

ratios from 2.3 to 2.7. This ensured minimal buckling and friction effects (Table 1). 

2.2. Confinement thickness 

The configurations were selected to ensure that the confinement Ratio 𝐶𝑟 values across groups are similar, enabling fair 

comparisons of their effectiveness. The confinement ratio is a dimensionless parameter that quantifies the level of lateral 

confinement pressure applied to the concrete core, normalized by the concrete’s unconfined strength. It is defined as: 

𝐶𝑟 =
𝑓𝑙

𝑓𝑐
′  (1) 

where 𝑓𝑙 is lateral confining pressure (from steel, FRP, or hybrid system), and 𝑓𝑐
′ is the unconfined compressive strength of concrete. 

The lateral confining pressure 𝑓𝑙 depends on the thickness and stiffness of the confining material. This pressure can be estimated 

using hoop equilibrium theory. The lateral confining pressure 𝑓𝑙 for steel tubes, FRP jackets, and hybrid confinement (steel + FRP) 

are defined in Eqs. 7 to 9, respectively: 



Salari and Naghipour Civil Engineering and Applied Solutions, 2025; 1(2): 1-13 
 

3 
 

𝑓𝑙 =
2𝑡𝑠𝑓𝑦𝑠

𝐷
  (2) 

𝑓𝑙 =
2𝑡𝑓𝑓𝑢𝑓

𝐷
  (3) 

𝑓𝑙 =
2𝑡𝑠𝑓𝑦𝑠+2𝑡𝑓𝑓𝑢𝑓

𝐷
  (4) 

where 𝑡𝑠 and 𝑓𝑦𝑠 are the thickness and yield strength of the steel tube, 𝑡𝑓 and 𝑓𝑢𝑓 are the thickness and ultimate tensile strength of 

the FRP, and 𝐷 is the internal diameter of the concrete core. The steel tube thickness was 2.0 mm for specimens in Group S, while 

Group F specimens were wrapped with two layers of FRP, totaling 0.32 mm in thickness. For the hybrid Group SF, specimens were 

confined using a 0.9 mm thick steel tube combined with a 0.16 mm thick single-layer FRP wrap (Fig. 2). 

  
(a) (b) 

Fig. 1. (a) Confined specimens, top view of a concrete column confined with a hybrid FRP–steel tube. 

 

Table 1. Geometric Properties of Specimens. 

Group Core Diameter (mm) Height (mm) H/D Ratio No. of Specimens 

R (Control Samples) 55 150 2.7 6 

S (Confined Specimens) 55 140 2.5 5 

F (Confined Specimens) 60 140 2.3 5 

SF (Confined Specimens) 55 140 2.5 5 

 

 
Fig. 2. Hybrid steel–FRP tube before concrete casting. 

2.3. Specimen preparation and curing conditions 

Two days after casting, the control samples (Group R), which were not confined (Fig. 3(a)), were de-molded and placed in a 

water curing tank. These specimens remained fully submerged in water until the day of testing. Confined specimens, encased in 

steel tubes (Group S), FRP jackets (Group F), and hybrid steel–FRP tubes (Group SF), were not immersed in water after demolding. 

Because the lateral surfaces were covered with impermeable jackets and the top and bottom surfaces were sealed using steel end 
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plates, the risk of moisture loss was minimized (Fig. 3(b)). These specimens were stored at room temperature under sealed conditions 

until the day of testing. 

  
  

Fig. 3. (a) Control specimens (Group R), (b) Confined specimens with steel tubes (Group S), FRP jackets (Group F), and hybrid steel–

FRP tubes (Group SF). 

To compare the unconfined compressive strength of the same concrete used in the confined specimens, on the test day, two 

specimens from each confined group were carefully cut and stripped of their steel or FRP jackets using a precision saw. The concrete 

core was then extracted and tested as a reference. These samples were labeled as unconfined specimens from jacketed groups 

(sometimes referred to as "stripped controls") and were used to directly measure the baseline strength of the confined groups' 

concrete without external confinement (Fig. 4). 

 
Fig. 4. Concrete cores extracted from confined specimens. 

2.4. Material properties 

The materials used in this study included concrete, steel tubes, and fiber-reinforced polymer (FRP) jackets. The concrete was 

designed according to ACI 211 standards with a target compressive strength of 35 MPa. The steel used for confinement was tested 

and found to have a modulus of elasticity of 210 GPa and yield strength of 340 MPa. It also exhibited strain hardening, with an 

ultimate tensile strength of approximately 480 MPa. For external confinement, GFRP (Glass Fiber Reinforced Polymer) sheets were 

used. According to the manufacturer, the GFRP had a modulus of elasticity of 76 GPa and an ultimate tensile strength of 2300 MPa. 

The FRP jackets were manufactured using the wet lay-up process, and fibers were oriented in the hoop direction to provide effective 

lateral confinement. 

2.5. Test setup and instrumentational 

All specimens were tested using a 200-ton capacity ELE compression testing machine. For the control (unconfined) specimens, 

two MDF plates were placed at the top and bottom ends of the cylinders to reduce stress concentration and prevent premature 

cracking. The average compressive strength of the unconfined specimens was recorded and used as the reference strength 𝑓𝑐
′. For 

the confined specimens (not acting as structural columns), the axial load was applied directly to the concrete core rather than through 

the confining shell. To ensure this, a steel rod with a diameter smaller than the inner diameter of the confining tube was used to 

apply load directly to the core. This ensured that no contact occurred between the loading platen and the inner surface of the 

confinement tube, preventing friction effects that could influence test results. The loading and instrumentation setup is shown in 
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Fig. 5. 

 
Fig. 5. A steel-confined specimen with instrumentation for loading and deformation measurement. 

To measure lateral strain, two horizontal strain gauges were symmetrically mounted on opposite sides of each specimen at mid-

height on the external surface (as shown in Fig. 6(a)). The average reading from these gauges was taken as the lateral strain. 

Additionally, to evaluate the stress distribution and possible circumferential cracking in the tube, a vertical strain gauge was added 

to one of the horizontal gauges. To determine the axial strain of the concrete core, two LVDTs were placed symmetrically on 

opposite sides of each specimen. The average displacement recorded by these LVDTs was taken as the vertical deformation (see 

Fig. 6(b) for the test setup). 

  
(a) (b) 

Fig. 6. (a) Strain gauge arrangement on confined specimens, (b) Loading setup for confined specimens. 

3. Results and discussion 

3.1. Failure mode 

3.1.1.Unconfined concrete specimens (Group R) 

Fig. 7 shows the failure pattern of control specimens cured in water. The observed failures correspond primarily to Type B and 

Type C modes in ASTMC39. These refer to conical shear failure and shear with splitting, respectively. The cracks observed in the 

specimens were relatively deep, and in some cases, the failure was accompanied by a distinctly loud sound, indicating brittle fracture 

through the aggregate particles. This confirms that the failure was not limited to the cement paste but involved the fracture of coarse 

aggregates, typical of well-cured, high-strength concrete. 
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Fig. 7. Failure patterns of reference concrete specimens. 

Further, two specimens from each confined group were tested after removing their steel or FRP confinement on the day of 

testing. As shown in Fig. 8, the resulting failure was characterized by very fine surface cracks with no significant crack depth or 

audible fracture sound, indicating low-energy brittle failure. The cracks did not propagate through the coarse aggregates, suggesting 

that the failure occurred primarily along the weakened cement paste–aggregate interface. This brittle response confirms the limited 

integrity of the exposed concrete cores, likely due to micro-damage during confinement removal and the absence of external 

restraint. 

 
Fig. 8. Failure mode of unconfined concrete cores extracted from confined specimens on the test day. 

3.1.2.Confined concrete specimens (Group F) 

This section discusses the failure modes of various types of confinement, including FRP, steel, and hybrid FRP–steel systems. 

FRP-confined specimens (Group F) exhibited failure through rupture of the hoop fibers in the circumferential direction. This was 

triggered by significant lateral dilation of the core concrete, which generated high tensile stresses in the FRP jacket (Fig. 9(a)). The 

failure was typically sudden and brittle, characteristic of the limited ductility of FRP materials. Steel-confined specimens (Group S) 

failed due to radial bulging at mid-height without signs of local buckling. The steel tubes yielded under high circumferential tensile 

stress, with the most pronounced swelling occurring at the center of the specimen. This was attributed to the peak axial stress 

developing at mid-height and the friction between the specimen ends and the loading platens, which restrained lateral expansion 

near the ends (Fig. 9(b)). Hybrid FRP–steel confined specimens (Group SF) showed a sequential failure process. Initially, the FRP 

jacket ruptured in the hoop direction as a result of internal concrete expansion, reducing the confinement capacity. With continued 

axial loading, local buckling and eventual rupture of the steel tube followed, leading to a complete structural failure (Fig. 9(c)). This 

two-stage failure highlights the interaction and transitional behavior between brittle FRP and ductile steel confinement. 

Table 1 summarizes the average compressive strength and ultimate axial strain for each group. Group F showed a ~2.3× strength 

increase and 10× higher strain than R’. Group S showed the highest strength, but Group SF achieved  a better balance between 

strength and ductility. 𝑓𝑐
′ is unconfined compressive strength and 𝑓𝑐𝑐

′  is confined compressive strength. 

3.2. Stress-strain behavior 

3.2.1.Axial stress–strain 

The axial stress–strain curves of the specimens confined with steel tube (S), FRP (F), and hybrid FRP-steel tube (SF) 

demonstrated distinct behavioral differences, as shown in Fig. 10. Up to approximately the unconfined compressive strength (𝑓𝑐
′ ≈

24.7 𝑀𝑃𝑎), all specimens exhibited a nearly identical response, indicating that lateral confinement does not activate significantly 

in the initial linear region of loading. Beyond this point, concrete begins to crack internally, generating lateral expansion that 

activates the confinement mechanism in each group. The stress–strain response then diverges based on the confinement system. The 

FRP-confined group (F) exhibited the steepest post-peak drop in stiffness, indicating more brittle failure, while the steel-confined 
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group (S) showed the most ductile behavior with a long post-peak plateau. The hybrid group (SF) showed intermediate behavior, 

benefiting from the stiffness of FRP and the ductility of steel. 

   
(a) (b) (c) 

Fig. 9. (a) Failure mode of an FRP-confined concrete specimen, (b) Failure mode of a steel tube-confined concrete 

specimen, and (c) Failure mode of a hybrid FRP–steel tube confined concrete specimen. 

 

Table 1. Average Compressive Strength and Ultimate Axial Strain. 

Group 𝒇𝒄𝒄
′  (MPa) 𝒇𝒄𝒄

′  / 𝒇𝒄
′  Ultimate Axial Strain 

R' 27.4 – – 

R 35.2 1.28 – 

F 79.5 2.26 0.033 

S 95.2 2.79 0.048 

SF 89.7 2.61 0.026 

 

 
           Fig. 10. Axial stress-strain curves of confined concrete specimens. 

To further analyze this behavior, the lateral confining pressure 𝑓𝑙 from elastic confinement can be calculated using the hoop 

stress relation: 

𝑓𝜃 = 𝐸𝜀𝜃   →      𝑓𝑙 =
2𝑡𝐸𝜀𝜃

𝐷
= (

2𝑡𝐸

𝐷
) . 𝜀𝜃  (5) 

where 𝐸 is the modulus of the confining material, 𝜀𝜃 is the lateral strain, 𝑡 is the thickness of the confining element, and 𝐷 is the 

diameter of the concrete core. From Eq. 10, the equivalent lateral stiffness (
2𝑡𝐸

𝐷
) was calculated for each group to evaluate their 

contribution to lateral pressure resistance. For the FRP-confined group (F), the lateral stiffness was estimated at 0.8 GPa; for the 

steel-confined group (S), it was 7.2 GPa; and for the hybrid FRP–steel group (SF), the combined stiffness reached 15.1 GPa. These 

values confirm that the hybrid system offers the highest confinement effectiveness due to the parallel contribution of both FRP and 
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steel, while the FRP-alone system provides the lowest confinement stiffness, which explains its relatively more brittle behavior after 

peak stress. 

To evaluate the initial stiffness of the confined specimens, the initial tangent modulus was calculated from the linear portion of 

the stress–strain curves. As illustrated in Fig. 11, the FRP-confined group (F) exhibited the lowest average elastic modulus, measured 

at 9699 MPa. In contrast, the steel-confined group (S) and hybrid group (SF) demonstrated higher initial stiffness values of 11,797 

MPa and 11,655 MPa, respectively. This trend reflects the mechanical nature of the confining materials: while FRP primarily 

provides hoop confinement and does not significantly resist axial deformation, steel and hybrid tubes offer both axial and lateral 

stiffness. The slight difference between the S and SF groups suggests that the axial stiffness of the hybrid system is predominantly 

governed by the steel component. These findings confirm that FRP alone contributes less to axial stiffness, particularly during the 

early elastic stage, whereas steel and hybrid tubes enhance both the initial stiffness and the overall load-carrying behavior from the 

onset of loading. 

 
Fig. 11. Initial portion of axial stress-strain curves for confined concrete specimens. 

3.2.2.FRP confinement 

The stress–strain response of FRP-confined concrete specimens (Fig. 12) shows a distinct bilinear trend. In the initial phase, the 

behavior closely follows that of unconfined concrete, with the FRP jacket exerting minimal confinement. As the axial load increases, 

lateral expansion activates the FRP, which then begins to provide lateral pressure in a linear manner up to the rupture point. The 

slope of the second branch is primarily influenced by the hoop stiffness of the FRP and is only slightly affected by the compressive 

strength of the concrete. Increasing the number of FRP layers results in a higher confinement stiffness, thereby increasing the slope 

of the post-peak branch and raising the peak strength. Upon rupture of the FRP, the lateral confinement abruptly ceases, and since 

no further restraint is applied to resist lateral dilation, the core concrete fails suddenly. The failure is brittle and occurs at the moment 

of jacket rupture, highlighting the absence of post-rupture confinement. 

3.2.3.Steel confinement 

As shown in Fig. 13, steel-confined specimens behave differently. After the axial stress reaches the unconfined concrete strength, 

lateral expansion initiates hoop tension in the steel tube. Because of the high confinement stiffness of steel, there is only a minor 

drop in the curve’s slope after the peak, and no significant post-peak softening is observed. The steel continues to apply nearly 

constant lateral pressure even after yielding, provided the steel demonstrates ideal elastic–plastic behavior. If the steel exhibits strain 

hardening, the lateral pressure increases post-yield, slightly raising the axial load capacity further. However, if the steel has low 

post-yield stiffness, the confinement effect declines more rapidly. In this study, the steel used showed noticeable strain hardening, 

contributing to improved ductility and a more stable post-peak response. The axial stress–strain curve remains smooth and transitions 

gradually into a softening branch. 

3.2.4.Hybrid FRP–steel confinement 

The hybrid specimens (Fig. 14) display a combined response. Initially, the confinement stiffness is high due to the contribution 

of both steel and FRP. At approximately 65 MPa axial stress, a sudden drop in slope occurs, which corresponds to the yielding of 

the steel tube. Although the steel's confinement contribution reduces after yielding, the FRP—still intact—continues to provide 

confinement and maintains the residual strength of the system. Once the FRP eventually ruptures, the lateral pressure from the 

hybrid shell decreases sharply. However, due to the ductility and strain capacity of the steel, the column maintains its integrity and 

prevents catastrophic failure. The steel tube absorbs deformation and preserves structural resistance over a wide strain range. This 

synergy between the brittle high-strength FRP and ductile steel results in a stable and staged failure mechanism, extending both the 
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strength and ductility of the system. 

 
Fig. 12. Initial portion of axial stress-strain curves for confined concrete specimens. 

 

 
Fig. 13. Axial and lateral stress-strain curve of steel-confined concrete specimen, showing yielding and post-yield behavior. 

3.3. Volumetric strain 

Volumetric strain response was evaluated to gain a deeper understanding of the confinement effect in each group. The volumetric 

strain–axial stress curves are presented in Figs. 15 to 17 for the FRP, steel, and hybrid-confined specimens, respectively. 

3.3.1.FRP-confined specimens 

As shown in Fig. 15, the volumetric strain response of FRP-confined concrete begins with a positive slope, indicating a 

contraction behavior up to approximately the unconfined compressive strength 𝑓𝑐
′. This phase corresponds to the compaction of 

internal voids and early crack closure. After reaching 𝑓𝑐
′, the slope turns negative, signifying a transition from contraction to dilation, 

as a result of increasing micro-cracking and internal damage. As the lateral strain increases, the internal pressure intensifies until it 

reaches the rupture limit of the FRP shell, causing a sudden drop in confinement. This rupture leads to a sharp and immediate 

increase in volumetric strain. Shortly after rupture, the curve exhibits a temporary rebound (i.e., a partial recovery of slope), 

reflecting the release of stored elastic energy in the FRP and concrete core. However, this recovery is short-lived, and the system 

soon transitions into a softening phase dominated by the rapid volumetric expansion of the now-unconfined concrete core. 

3.3.2.Steel-confined specimens 

The volumetric strain curve of the steel-confined specimen is illustrated in Fig. 16. Prior to the yielding of the steel tube, the 

behavior is predominantly contractive, and even after the axial stress reaches 𝑓𝑐
′, the core concrete remains well-confined. This is 

attributed to the high lateral stiffness of the steel tube, which effectively limits dilation. Once the steel yields, however, the rate of 
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lateral pressure increase slows down, and the volumetric strain curve shifts into the dilation region. Although strain hardening of 

the steel may delay this transition, it is not sufficient to entirely prevent it. As a result, post-yield volumetric expansion occurs, albeit 

less abruptly than in FRP-confined specimens. 

 
Fig. 14. Axial and lateral stress-strain response of a hybrid FRP–steel confined concrete specimen, indicating steel tube yielding 

followed by FRP rupture. 

 

 
Fig. 15. Axial stress–volumetric strain curve of an FRP-confined concrete specimen. 

3.3.3.Hybrid FRP–steel confined specimens 

As shown in Fig. 17, prior to steel yielding, the hybrid-confined concrete exhibits a contractive volumetric behavior due to the 

high lateral stiffness of the combined FRP–steel tube. This confinement prevents noticeable internal cracking even at stress levels 

close to 𝑓𝑐
′. Once the steel tube yields, the effective confinement stiffness drops significantly, resulting in a noticeable increase in 

volumetric strain and transition into the dilation phase. At this stage, microcracking and lateral deformation intensify. However, the 

rate of volumetric expansion is slower than in steel-only confined specimens because the FRP jacket remains intact and continues 

to apply lateral pressure. After the rupture of the FRP, the confinement capacity is significantly reduced, and the concrete core 

undergoes rapid lateral expansion. The post-rupture trend shows a steep increase in volumetric strain, confirming the loss of effective 

confinement and the onset of concrete softening under axial load. 
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Fig. 16. Axial stress–volumetric strain curve of a steel-confined concrete specimen. 

 
Fig. 17. Axial stress–volumetric strain curve of a hybrid FRP–steel confined concrete specimen. 

4. Conclusion 

This experimental study examined the axial behavior of concrete cylinders confined using steel tubes, FRP jackets, and hybrid 

FRP–steel tubes under identical confinement ratios. The comparison revealed distinct differences in failure mechanisms, stress–

strain responses, and volumetric strain behavior across the confinement types. 

In terms of failure mode, FRP-confined specimens failed suddenly due to brittle rupture of hoop fibers, while steel-confined 

specimens showed ductile bulging at mid-height. The hybrid specimens exhibited a staged failure sequence—initial FRP rupture 

followed by steel yielding and buckling—providing a more controlled and gradual failure process. The stress–strain behavior of the 

FRP group was bilinear with a sharp post-peak drop, indicating limited ductility. Steel-confined specimens maintained a smooth 

curve with extended post-peak strength due to strain hardening. Hybrid specimens demonstrated intermediate behavior, with high 

strength and improved post-peak ductility, reflecting the synergistic effect of FRP stiffness and steel ductility. Volumetric strain 

analysis confirmed these findings: FRP-confined specimens experienced rapid dilation post-rupture, while steel and hybrid groups 

exhibited more stable and restrained expansion. The hybrid group, in particular, delayed dilation onset and maintained better 

confinement after steel yielding and FRP rupture. 

Overall, the hybrid FRP–steel system offered the most favorable balance between strength, ductility, and confinement 

effectiveness. It is recommended for applications demanding enhanced axial performance and failure control, particularly in seismic 

or durability-critical environments. 
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A  R  T  I  C  L  E I  N  F  O 

This study evaluates the environmental and economic performance of six innovative 

concrete mixtures using Life Cycle Assessment (LCA) and cost analysis. The concrete types 

incorporate various industrial and agricultural by-products, including PET waste, steel 

fibers, nano-silica, pumice, ceramic waste, EAF slag, asbestos cement sheets, and rice husk 

ash. Using the CML 2001, IMPACT 2002+, and ReCiPe methods, environmental impacts 

were assessed across key categories, such as global warming potential, toxicity, and 

resource depletion. Results indicate that conventional concrete had the lowest 

environmental burden overall, while PET/steel fiber concrete showed the highest impact 

in most categories. Sensitivity analysis identified cement as the primary contributor to 

environmental damage, followed by micro-silica in select mixes. The economic analysis 

identified conventional concrete as the most cost-effective, followed by pumice and 

PET/steel fiber concretes, which were 19.3% and 69.6% more expensive, respectively. 

Integrating environmental and cost factors revealed that, despite its relatively low cost, 

PET/steel fiber concrete contributed the most to CO₂ emissions. These findings support 

more informed material selection for sustainable construction. 
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1. Introduction 

The construction industry is a major contributor to global environmental degradation, largely due to intensive energy use, raw 

material extraction, and emissions from material production from cement manufacturing, as concrete is the most widely used 

construction material [1, 2]. The key challenge is balancing the rising global demand for cement and concrete with the urgent need 

to reduce CO₂ emissions. In response, sustainable concrete structures have gained growing attention, particularly in countries with 

stringent environmental regulations. A range of strategies has been developed to minimize the environmental footprint of concrete-

based infrastructure. These impacts are closely tied to the composition and properties of the materials used in concrete production. 
As concrete is central to urban development, it contributes to the high emissions from cities, estimated at 70% of global totals. In 

line with the Kyoto Protocol, this has driven the development of tools to assess the environmental performance of buildings across 

their life cycle [3]. To effectively address these environmental challenges in the concrete and construction sectors, it is essential to 

adopt a comprehensive and scientifically grounded evaluation tool-Life Cycle Assessment (LCA) [4]. 

Given the complexity of materials, energy flows, and processes involved, a systematic analytical approach like LCA is 

indispensable. LCA enables the comparison and evaluation of environmental impacts across different product systems using a 

standardized functional unit [5]. According to ISO guidelines, LCA covers the full "cradle-to-grave" span of a product—from raw 

material acquisition to production, use, recycling, and final disposal [6]. There are two main LCA approaches: process-based LCA, 

which tracks detailed inputs and outputs for specific processes and is commonly used in construction, and Economic Input-Output 

LCA (EIO-LCA), which evaluates impacts at a broader economic level [7]. The LCA methodology, as defined by ISO [8], involves 

four key phases: goal and scope definition, life cycle inventory (LCI) analysis, life cycle impact assessment (LCIA), and 
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interpretation. These steps help quantify various environmental parameters, including global warming potential, resource depletion, 

toxicity, acidification, and more. 

LCA highlights material composition as a key factor in environmental impact. Cement, the main binder in concrete, is a major 

CO₂ emitter due to fuel combustion and limestone decomposition. Smaller emissions also result from electricity use and the release 

of other gases like NOₓ and CH₄ during production [9]. Producing one ton of cement emits about 930 kg of CO₂-mainly from 

limestone decomposition (500 kg), fuel combustion (350 kg), and electricity use (80 kg). NOₓ emissions vary by fuel type and kiln 

technology, ranging from 1.5–9 kg per ton [10]. To reduce emissions, Portland cement is often partially replaced with pozzolanic 

materials—natural or artificial substances that react with calcium hydroxide to form cement-like compounds [11]. Enhancing 

concrete sustainability also involves reducing the use of virgin aggregates, which make up 70–80% of its weight and 60–70% of its 

volume [12]. Concrete aggregates are classified as natural or artificial. Natural aggregates-mainly sand and gravel-are cost-effective 

and commonly sourced from deposits or quarries. However, their extraction through mining can significantly damage rivers and 

ecosystems, highlighting the need to reduce reliance on these materials [13, 14]. To reduce reliance on natural aggregates, recycled 

or artificial alternatives are used. Recycled aggregates come from construction waste but often have lower quality due to high water 

absorption and reduced strength. In contrast, artificial aggregates made from industrial by-products like EAF slag and GGBFS offer 

better performance and help address waste disposal, supporting environmental sustainability [15]. In addition to aggregates, 

additives—though used in smaller quantities-play a key role in enhancing concrete performance. Concrete additives are generally 

classified into two main groups: chemical additives and mineral additives [16]. 

Francesco Colangelo et al. [17], in their study on the LCA of various concrete types containing waste for sustainable construction, 

assessed the environmental impacts of all samples using the SimaPro software. The environmental damage analysis (including 

resource use, ecosystem quality, and human health) revealed that human health is the primary area of concern. Demiral et al. [18] 

conducted a cradle-to-gate life cycle assessment of self-compacting mortars with fly ash and PET waste using SimaPro and the 

ReCiPe database. The results showed that incorporating recycled materials reduces environmental impacts by conserving natural 

aggregates and minimizing landfill waste. Asadollahfardi et al. [19] conducted a cradle-to-gate LCA on five concrete types using 

SimaPro 8.1. Geopolymer concrete showed a 26% lower global warming potential than ordinary concrete, while micro-silica, nano-

silica, and micro-nanobubble concretes had increases of 56%, 17%, and 38%, respectively. Overall, ordinary concrete had the lowest 

environmental impact during production. Billel et al. [20] showed that using natural volcanic pozzolans improved concrete strength, 

insulation, and reduced density. A 25% substitution of black pozzolan powder was optimal, offering both economic and 

environmental benefits. Ersan et al. [21] used cradle-to-gate LCA to compare ordinary and lightweight concretes. Lightweight 

concrete had 13% lower greenhouse gas emissions, and recycled plastic waste proved to be a sustainable alternative to natural 

aggregates. Shahmansouri et al. [22] found that adding natural zeolite to concrete exposed to aggressive environments reduced 

global warming potential, with 20% zeolite achieving the lowest impact. Napulano et al. [23] used LCA to compare lightweight 

concretes and found that those made with recycled aggregates had significantly lower environmental impacts than those with natural 

aggregates. Valipour et al. [24] found that replacing 30% of cement with natural zeolite in green concrete significantly reduced 

global warming potential over a 15-year lifecycle in marine environments. Nath et al. [25] showed that replacing 30–40% of cement 

with fly ash in marine concrete reduced the carbon footprint by up to 23% and energy use by nearly 10%, while also enhancing 

durability. However, high-strength concrete increased CO₂ emissions due to higher cement content. 

To support informed material selection for sustainable and low-carbon construction, this study focuses on the environmental and 

economic assessment of high-strength and lightweight concrete mixtures incorporating pozzolanic and recycled materials. Six mix 

designs were developed, including one conventional concrete and five alternatives containing materials such as pumice, PET waste 

with steel fibers, nano-silica, ceramic waste with electric arc furnace slag (EAFS), and asbestos cement sheets with rice husk ash. 

A process-based LCA was conducted following ISO 14040/44 standards [26], using a cradle-to-gate system boundary that includes 

raw material extraction, transportation, and concrete production. In parallel, an economic analysis was performed based on material 

and energy costs. To evaluate the robustness of the environmental results and identify key contributing factors, a sensitivity analysis 

was also conducted by varying input quantities. This integrated approach offers a comprehensive basis for assessing the trade-offs 

between sustainability and cost in concrete mix design. 

2. Materials and methods 

2.1. Concrete mix designs 

Six concrete mixtures were developed and assessed in this study. Table 1 summarizes their compositions and characteristics. 

These mixes include: 

• Conventional concrete: 42 MPa compressive strength, water-to-cement (w/c) ratio of 0.50 

• Pumice concrete: 23 MPa compressive strength, w/c ratio of 0.27 

• PET/steel fiber concrete: 35 MPa compressive strength, w/c ratio of 0.30 

• Recycled fine aggregate with nano-silica concrete: 40 MPa compressive strength, w/c ratio of 0.50 

• Ceramic and EAF slag concrete: 40 MPa compressive strength, w/c ratio of 0.40 

• Asbestos cement sheet and rice husk ash concrete: Mix details presented in Table 1. 
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Table 1. Mix design of concrete types. 

Ordinary Pumice PET and fibers Nano-Silica Ceramics and EAFS Asbestos and rice husk ash Material/type of concrete 

430 468.3 477 404.2 448 425 Portland cement 

215 126.7 157 215 215 215 water 

845 - 1.04 855.5 445 522 gravel 

- 200.7 - - - - Pumice aggregate 

855 - 95 - 275 570.7 sand 

- - - 793.1 - - Recycled fines 

- 46.8 - - - - Micro-silica 

- - - 25.8 - - Nano-silica 

- 0.85 0.92 0.4 - 2.1 plasticizer 

- - 36.7 - - - PET waste 

- - 78.5 - - - Steel fibers 

- - 53 - - - Silica fume 

- - - - 52 - Ceramic 

- - - - 445 - Slag 

- - - - - 75 Rice husk ash 

- - - - - 387.8 Asbestos cement 

2.2. Life Cycle Assessment (LCA) 

This study employed a process-based LCA using the cradle-to-gate approach, in accordance with ISO 14040/44 standards [26]. 

The LCA was structured into four main phases: goal and scope definition, inventory analysis, impact assessment, and interpretation. 

2.2.1.Goal and scope definition 

The primary goal was to evaluate and compare the environmental impacts associated with producing 1 m³ of each concrete type. 

The cradle-to-gate system boundary includes raw material extraction, transportation, and concrete production. Fig. 1 illustrates the 

system boundaries applied in this study. 

 
Fig. 1. System boundaries for the production of 1 cubic meter. 

2.2.2.Inventory analysis 

The life cycle inventory (LCI) data were sourced primarily from the Ecoinvent database and integrated into SimaPro software 

for analysis. Material quantities and transport distances were carefully recorded for each mix, and energy consumption for 

production was standardized to 157.9 kWh per m³. 

2.2.3.Transportation and energy use 

Material transport was modeled using Euro 4 standard trucks with a capacity of 16–32 tons, based on data from the Ecoinvent 

database integrated into SimaPro. A uniform transport distance of 70 kilometers was assumed for all raw materials. According to 
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Turner and Collins [27], the CO₂ emission factor for producing and delivering 1 m³ of concrete, including mixing and transport to 

a construction site, is 0.0033 kg CO₂. Additionally, emissions related to energy use-such as on-site preparation, access construction, 

and concrete pumping-were estimated at 0.0094 kg CO₂ per m³. The energy demand for producing 1 m³ of ready-mix concrete was 

taken as 568.6 MJ [28], equivalent to 157.9 kWh, and was applied uniformly across all mix designs in this study. 

2.2.4. Software input and mix-specific inventory 

Each mix’s LCI was entered into SimaPro with full consideration of raw material types, packaging, transport (in tonne-

kilometers), and energy use. Tables A-1 through A-6 detail these inventories for all six concrete types. 

2.3. Impact assessment and interpretation 

The assessment focused on three key areas: human health, ecosystem quality, and resource depletion, following a cradle-to-gate 

LCA in accordance with ISO 14040/44 [26]. To quantify these impacts, three established methods were applied: CML 2001, ReCiPe, 

and IMPACT 2002+. These methods offer complementary perspectives by covering both midpoint and endpoint indicators. 

Midpoint metrics-such as GWP, acidification, and eutrophication-were used to assess specific environmental effects. CML 2001 

focuses on these categories, while IMPACT 2002+ extends the analysis to endpoint-level damage, capturing broader implications 

for human health, ecosystem integrity, climate systems, and resource availability. Impact categories were selected based on their 

relevance to construction sustainability. This section describes the assessment framework and does not include an interpretation of 

the results. 

2.4. Sensitivity analysis and economic evaluation 

Sensitivity analysis was conducted to examine how variations in material quantities affect the environmental outcomes of the 

LCA [29]. This involved adjusting the volume of all input materials in each concrete mix by ±25%, a standard variation used in 

LCA studies to reflect typical fluctuations in raw material supply and production conditions. This approach helps assess the 

robustness of the results and identify parameters with the greatest influence on environmental impact, thereby improving confidence 

in the findings. 

In parallel, an economic evaluation was performed to assess the cost-effectiveness of each concrete mix. The total cost of 

producing 1 cubic meter of concrete was calculated based on the unit price of all constituent materials and the energy required for 

production. Energy costs were included using a standard rate per kilowatt-hour. This integrated analysis enabled a comparison of 

both environmental performance and production costs across the different mix designs. 

3. Results 

The following section presents the results of the environmental and economic evaluations of the six concrete mixtures. It includes 

detailed analyses using multiple LCA methods, followed by a sensitivity analysis and cost comparison. 

3.1. environmental impact assessment 

The results of the evaluation using the CML2001, IMPACT 2002+, and ReCiPe methods for normal concrete, pumice, PET, and 

fiber concrete, nano-silica concrete, ceramic and EAFS concrete, and asbestos and rice husk ash concrete are presented. 

3.1.1. Environmental impact results using the CML 2001 method 

The environmental impacts of the six concrete mixtures were assessed using the CML 2001 method, focusing on global warming 

potential, human toxicity, terrestrial ecotoxicity, and acidification as key midpoint indicators. 

As presented in Table 2, conventional concrete exhibited the lowest environmental burdens in all categories, including global 

warming (564.66 kg CO₂ eq), human toxicity (77.38 kg 1,4-DB eq), terrestrial ecotoxicity (0.75 kg 1,4-DB eq), and acidification 

(1.47 kg SO₂ eq). On the other hand, the PET and fiber concrete mix had the highest values for global warming (939.32 kg CO₂ eq), 

human toxicity (588.98 kg 1,4-DB eq), terrestrial ecotoxicity (2.22 kg 1,4-DB eq), and acidification (3.11 kg SO₂ eq), reflecting its 

intensive material and energy inputs. 

Table 2. CML 2001-based environmental impact values across four midpoint categories. 

Concrete type 
Global warming (kg CO2 

eq) 

Human toxicity (kg 1,4-

DB eq) 

Terrestrial ecotoxicity (kg 1,4-

DB eq) 

Acidification (kg SO2 

eq) 

Conventional concrete 564.66 77.38 0.75 1.47 

Pumice concrete 736.64 272.8 0.95 2.36 

PET and fiber concrete 939.32 588.98 2.22 3.11 

Nano-silica concrete 586.09 187.32 0.84 1.97 

Ceramic and EAFS concrete 898.72 119.87 1.04 2.09 

Asbestos and rice husk ash 

concrete 
706.56 118.06 1.10 2.23 
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Fig. 2 illustrates the relative share of each concrete type’s contribution to total environmental damage in percentage terms. PET 

and fiber concrete had the highest contributions in all categories: global warming (91.3%), human toxicity (60.2%), and ecotoxicity 

(57.6%). In contrast, conventional concrete consistently showed the lowest percentage contributions, with values of 54.9%, 8.33%, 

19.4%, and 12.9% across the respective categories. 

 

Fig. 2. Percentage contribution of six concrete mixtures to global warming, human toxicity, terrestrial ecotoxicity, and acidification, 

as assessed by the CML 2001 method. 

3.1.2. Environmental impact results using the IMPACT 2002+ method 

The environmental performance of the concrete mixtures was further evaluated using the IMPACT 2002+ method, which 

combines both midpoint and endpoint indicators. This dual-level approach provides a more comprehensive view of environmental 

damage by considering specific emissions and their broader consequences on human health, ecosystems, climate, and resource 

availability. As shown in Table 3, conventional concrete had the lowest environmental impact across all midpoint categories: global 

warming (553.26 kg CO₂ eq), ozone layer depletion (0.000031 kg CFC-11 eq), and mineral extraction (4.87 MJ surplus). In contrast, 

PET and fiber concrete recorded the highest values in global warming (888.98 kg CO₂ eq), ozone layer depletion (0.000053 kg 

CFC-11 eq), and mineral extraction (37.73 MJ surplus). 

Table 3. Characterization results of six concrete mixtures across selected midpoint impact categories using the IMPACT 2002+ method. 

Concrete type Global warming (kg CO2 eq) Ozone layer depletion (kg CFC-11 eq) Mineral extraction (MJ surplus) 

Conventional concrete 553.26 0.000031 4.87 

Pumice concrete 696.6 0.000044 5.87 

PET concrete and fibers 888.98 0.000053 37.73 

Nanosilica concrete 605.87 0.000040 5.66 

Ceramic concrete and EAFS 884.22 0.000039 13.61 

Asbestos concrete and rice husk ash 635.82 0.000038 8.51 

Table 4 summarizes the endpoint damage categories including human health (DALY), ecosystem quality, climate change, and 

resource use. Conventional concrete again had the lowest values in all categories. The PET and fiber concrete had the highest 

damage across all endpoints: 0.00090 DALY for human health, 265.79 PDF·m²·yr for ecosystem damage, 888.98 kg CO₂ eq for 

climate change, and 11,837.7 MJ for resource use. Pumice concrete and ceramic/EAFS concrete also exhibited elevated 

environmental burdens, particularly in climate change and resource categories. 

The percentage contribution of each concrete type to total environmental damage is illustrated in Fig. 3. PET and fiber concrete 

had the highest relative burden in all categories, exceeding 90% in climate change and human health. Pumice concrete also showed 

substantial impacts: 62.1% in human health and 80.6% in resource depletion. In the ecosystem quality category, asbestos and rice 

husk ash concrete contributed 22.1%, while ceramic and EAFS concrete showed a strong impact on climate change (89.6%), closely 

following the PET mix. 
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Table 4. Damage assessment results of six concrete mixtures across endpoint categories using the IMPACT 2002+ method. 

Concrete type 
Human health 

(DALY) 

Ecosystem quality 

(PDF1*m2*yr ) 

Climate change 

(kg CO2 e) 

Resources 

(MJ primary) 

Conventional concrete 0.00028 99.17 553.26 4388.20 

Pumice concrete 0.00062 193.34 696.68 9542.15 

PET concrete and fibers 0.00090 265.79 888.98 11837.70 

Nanosilica concrete 0.00036 122.87 568.00 5713.39 

Ceramic concrete and EAFS 0.00069 131.68 884.22 5856.81 

Asbestos concrete and rice husk ash 0.00039 225.13 637.76 5481.01 

 

 
Fig. 3. Relative environmental damage of six concrete types across IMPACT 2002+ endpoint categories (percentage contribution). 

3.1.3. Environmental impact results using the recipe method 

The environmental burdens of the concrete mixes were also evaluated using the ReCiPe 2016 method, which integrates midpoint 

impacts into aggregated endpoint damage categories: human health, ecosystems, and resources. This method enables direct 

comparison across different environmental dimensions in a unified damage framework. 

As presented in Table 5, conventional concrete consistently exhibited the lowest environmental damage across all categories, with 

the smallest values for human health (0.0009 DALY), ecosystems (0.00000051 species·yr), and resource use (USD 33.03). In 

contrast, PET and fiber concrete showed the highest impact on human health (0.0022 DALY), while asbestos and rice husk ash 

concrete resulted in the greatest damage to ecosystems (0.00000041 species·yr) and resources (USD 69.32). These outcomes reflect 

the influence of high embodied energy, waste processing, and additive-intensive mix designs in alternative concretes. 

Table 5. Endpoint damage results for six concrete mixes based on the ReCiPe 2016 method. 

Concrete type 
Human health 

(DALY) 

Ecosystems 

(species.yr) 
Resources (USD2013) 

Conventional concrete 0.0009 0.0000051 33.03 

Pumice concrete 0.0015 0.0000031 44.5 

PET concrete and fibers 0.0022 0.0000040 53.06 

Nanosilica concrete 0.0011 0.0000026 39.85 

Ceramic concrete and EAFS 0.0016 0.0000033 38.47 
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Asbestos concrete and rice husk ash 0.0012 0.0000041 69.32 

 

Fig. 4 illustrates the percentage contribution of each mix to total environmental damage in the three endpoint categories. PET 

and fiber concrete dominated the human health category with a 64.5% share, while asbestos/rice husk ash concrete had the highest 

impact on ecosystems (62%) and resource use (97%). As expected, conventional concrete contributed the least across all categories, 

reinforcing its comparatively lower environmental burden under the ReCiPe method. 

 
Fig. 4. Relative contribution of six concrete types to ReCiPe 2016 endpoint impact categories (in percentage). 

3.2. Sensitivity analysis 

To assess the robustness of the life cycle assessment results, a sensitivity analysis was conducted using the IMPACT 2002+ 

method by applying a ±25% variation in key input materials for each concrete mix. The IMPACT 2002+ method was used for this 

analysis, as it includes both midpoint and endpoint indicators, allowing for a comprehensive view of environmental effects. The aim 

was to identify which components had the greatest influence on overall environmental damage across four key categories: human 

health, ecosystem quality, climate change, and resource use. 

3.2.1. Conventional concrete 

As shown in Fig. 5, varying the cement content by ±25% had a clear impact across all damage categories. A 25% increase led 

to a 16.5% rise in climate change potential, while a 25% decrease reduced it by 19.8%. These results confirm cement as the most 

influential contributor to environmental impacts in this mix. 

3.2.2. Pumice concrete 

According to Fig. 6, the micro-silica content showed the highest sensitivity. A 25% increase led to rises of 16.3% in human 

health damage and 15.6% in resource use. In contrast, changes in pumice content produced minimal environmental variation, 

indicating its relatively low impact. 

3.2.3. Pet and fiber concrete 

As illustrated in Fig. 7, both micro-silica and PET significantly influenced environmental outcomes. Increasing micro-silica led 

to 10.5% more human health damage and 11.9% more resource use. Additionally, a 25% increase in cement caused a substantial 

11.7% increase in climate change impact. 

3.2.4. Nano-silica concrete 

Fig. 8 highlights cement as the dominant factor in this mix, with a 25% increase resulting in a 10.5% rise in human health damage 

and 12.2% in ecosystem degradation. Nano-silica showed moderate sensitivity, while electricity consumption had the greatest effect 
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on the resource use category. 

 
Fig. 5. Sensitivity analysis of conventional concrete under ±25% input variation using the IMPACT 2002+ method. 

 

 
Fig. 6. Sensitivity analysis of pumice concrete under ±25% input variation using the IMPACT 2002+ method. 

3.2.5. Asbestos and rice husk ash concrete 

Fig. 9 shows that both cement and electricity considerably influenced climate change and human health categories. Notably, rice 

husk ash had the largest effect on ecosystem damage, with an 11.9% increase observed when its content was increased. 

3.2.6. Ceramic and EAF slag concrete 

According to Fig. 10, a 25% increase in ceramic waste led to a 12.2% rise in human health damage. Cement again drove increases 

in both climate change and ecosystem categories, while electricity variation significantly affected resource consumption. 

3.2.7. Cross-verification of results using BEES and IPCC methods 

To ensure the validity and robustness of the environmental impact results, the findings from the CML 2001 and IMPACT 2002+ 

methods were cross-verified using two supplementary approaches: BEES (Building for Environmental and Economic Sustainability) 

and the IPCC method for GWP. These additional methods were selected due to their widespread use and methodological distinctions, 
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which allow for independent validation of key results. 

 
Fig. 7. Sensitivity analysis of PET and fiber-reinforced concrete under ±25% input variation using the IMPACT 2002+ method. 

 

 
Fig. 8. Sensitivity analysis of nano-silica concrete under ±25% input variation using the IMPACT 2002+ method. 

Tables 6 and 9 present the environmental impact results of five concrete types across acidification, eutrophication, global 

warming potential, and human toxicity. Among them, micro-silica concrete exhibited the highest impact in all categories, 

particularly in acidification and human toxicity. 

Table 7 presents a comparison of global warming potential values derived from the CML 2001 and IMPACT 2002+ methods 

against those obtained from the BEES model. The results show a high level of agreement across all concrete types, with percentage 

differences generally below 5%. The largest deviation was observed for the asbestos and rice husk ash concrete mix, at 7.43%. 

Despite differences in modeling assumptions and units of measurement, the close alignment across methods confirms the reliability 

and robustness of the life cycle assessment results and indicates that the relative environmental ranking of the concrete mixes is not 

significantly influenced by the choice of assessment model. 

Further validation was performed using the IPCC method, which focuses on climate-related emissions. As shown in Table 8, 

global warming results from CML 2001 and IPCC show excellent agreement with differences ranging from 0.04% to 0.20%. This 

confirms the robustness of the findings and indicates that the results are not sensitive to the choice of impact assessment model. 

These outcomes are consistent with prior research by Asadollahfardi et al. [19], who also reported minimal variation across methods 
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when evaluating the environmental impacts of different concrete types. 

Overall, these comparisons further confirm that methodological differences between IPCC and CML-IA have minimal impact 

on the outcome, supporting the robustness and consistency of the LCA results across evaluation methods. 

 
Fig. 9. Sensitivity analysis of asbestos and rice husk ash concrete under ±25% input variation using the IMPACT 2002+ method. 

 

 
Fig. 10. Sensitivity analysis of ceramic and EAFS concrete under ±25% variation in inputs using the IMPACT 2002+ method. 

Table 6. Global warming potential of six concretes: CML 2001 vs. BEES (with % difference). 

Concrete type Global warming for IMPACT (kg CO2 

eq) 
Global warming for BEES (g CO2 

eq) 
Difference   )%(  

Conventional concrete 564.66 559251.34 0.96 

Pumice concrete 736.64 720658.20 2.19 

PET and fiber concrete 939.32 918354.18 2.26 

Nano-silica concrete 586.09 578172.58 1.36 

Ceramic and arc slag concrete 898.06 891765.86 0.78 

Asbestos and rice husk ash concrete 706.56 684874.99 3.12 
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Table 9 presents the environmental impact results of five concrete types across acidification, eutrophication, global warming 

potential, and human toxicity. Among them, micro-silica concrete exhibited the highest impact in all categories, particularly in 

acidification and human toxicity. 

Table 7. Global warming potential of six concretes: IMPACT 2002+ vs. BEES (with % difference). 

Concrete type Global warming for IMPACT (kg CO2 

eq) 
Global warming for BEES (g CO2 

eq) 
Difference   )%(  

Conventional concrete 553.6 559251.36 1.08 

Pumice concrete 696.6 720658.44 3.33 

PET and fiber concrete 888.9 918354.18 3.22 

Nano-silica concrete 605.8 578172.38 4.61 

Ceramic and arc slag concrete 882.2 891764.56 0.85 

Asbestos and rice husk ash concrete 635.8 684874.35 7.43 

Table 8. Comparison of global warming potential for six concrete types using CML 2001 and IPCC methods (% difference). 

Concrete type Global warming for CML (kg 

CO2 eq) 
Global warming for IPCC (g CO2 

eq) 
Difference   )%(  

Conventional concrete 564.6 564.89 0.04 

Pumice concrete 736.6 737.62 0.13 

PET and fiber concrete 939.3 940.58 0.13 

Nano-silica concrete 586.09 586.5 0.07 

Ceramic and arc slag concrete 898.72 899.04 0.07 

Asbestos and rice husk ash concrete 706.56 707.99 0.20 

Table 9. Environmental impact indicators for five concrete types (acidification, eutrophication, GWP, human toxicity). 

Concrete type Acidification (kg SO2 

eq) 
Eutrophication (kg PO4

3- 

eq) 
Global warming potential (kg 

CO2 eq) 
Human toxicity (kg 1.4-

DB eq) 
Concrete with ordinary Portland 

cement 0.84 0.159 386.44 35.68 

Microsilica 1.55 0.572 605.32 182.52 

Geopolymer 1.11 0.183 286.85 72.35 

Micro-nano bubbles 0.89 0.175 424.17 37.45 

Nanosilica 0.96 0.185 453.31 41.04 

In Table 10, global warming potential values obtained from the IPCC and CML-IA (World 2000) methods were compared. The 

results show negligible differences for most concrete types-just 0.6% for ordinary Portland cement, nano-silica, and micro-

nanobubble concretes. Slightly higher differences were observed for geopolymer (0.9%) and micro-silica (2.4%) concretes. 

Table 10. CML-IA vs. IPCC: Global warming potential for five concretes (% difference). 

Concrete type Global warming for CML (kg CO2 eq) Global warming for IPCC (kg CO2 eq) Difference   )%(  

Concrete with ordinary Portland cement 388.84 386.44 0.6 

Microsilica 619.73 605.32 2.4 

Geopolymer 289.54 286.85 0.9 

Micro-nano bubbles 426.72 424.17 0.6 

Nanosilica 456.08 453.31 0.8 

3.3. Economic analysis of concrete mixes 

To complement the environmental analysis, an economic assessment was conducted using life cycle costing based on current 

Iranian market prices for raw materials. The cost per cubic meter of each concrete type was calculated from material quantities and 

unit prices (Table 11). 

The estimated costs are as follows: 

• Conventional Concrete: 9,854,800 IRR 

• Pumice Concrete: 11,999,646 IRR 

• PET & Fiber Concrete: 20,446,668 IRR 

• Nano-silica Concrete: 242,695,148 IRR 
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• Ceramic & EAFS Concrete: 34,386,450 IRR 

• Asbestos & Rice Husk Ash Concrete: 104,029,586 IRR 

Table 11. Unit prices of raw materials used in concrete mix designs (based on the Iranian market). 

Raw materials used Unit Price (I.R Rial) Raw materials used Unit Price (I.R Rial) 

Cement kg 13600 Pumice kg 2830 

Sand kg 2200 Ceramics kg 22500 

Sand kg 2200 Electric arc furnace slag kg 56170 

PET waste kg 185400 Asbestos cement sheets kg 87270 

Steel fibers kg 520000 Rice hull ash kg 800000 

Microsilica kg 54000 Lubricant L 952570 

Nanosilica kg 9000000 - - - 

Conventional concrete is the most cost-effective option, mainly due to its reliance on widely available and low-cost materials. 

In contrast, nano-silica concrete has the highest cost, driven by the high price of nanosilica and other specialized additives like 

microsilica and steel fibers. Other mixes, such as those containing rice husk ash, asbestos sheets, ceramics, and slag, also show 

elevated costs due to the expensive or limited availability of their components. While these alternatives may offer environmental or 

performance benefits, their high economic cost can limit practical application, highlighting the trade-off between sustainability and 

affordability in material selection. 

3.4. Integrated environmental–economic evaluation 

Given the critical role of both environmental and economic factors in material selection, an integrated assessment was performed 

to support more informed decision-making. As shown in Fig. 11, conventional concrete emerges as the most balanced option, 

offering both the lowest production cost and GWP. Nano-silica concrete demonstrates relatively low CO₂ emissions, suggesting 

environmental benefits; however, its extremely high cost significantly reduces its economic attractiveness. On the other hand, PET 

fiber-reinforced concrete, while economically moderate, exhibits the highest GWP, making it environmentally less favorable. 

Alternatives such as pumice concrete and EAFS-ceramic concrete offer more balanced profiles with moderate emissions and 

reasonable costs. These findings emphasize the importance of evaluating both impact categories jointly, as no single concrete mix 

optimizes all performance criteria simultaneously. 

 
Fig. 11. Economic and environmental assessment of CO2 emissions based on the CML method. 

3.5. Research limitations 

A key limitation of this study is that some of the proposed concrete mix designs were not implemented at full scale in real-world 

construction, limiting the availability of accurate performance data, particularly regarding service life. As a result, a cradle-to-gate 

system boundary was adopted, focusing exclusively on the environmental impacts associated with raw material extraction, 

processing, and concrete production. Additionally, due to limited transparency and restricted access to emission data from domestic 

manufacturing facilities in Iran, the life cycle assessment relied on European and international datasets and standards. While this 

approach provides a consistent methodological framework, it may not fully capture region-specific variations in environmental 

performance. 
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4. Conclusion 

This study assessed the environmental and economic performance of six concrete mixtures using LCA and cost analysis. The 

results consistently identified conventional concrete as the most environmentally and economically favorable option. It showed the 

lowest impacts across key categories such as global warming, human toxicity, ecotoxicity, and acidification, as confirmed by the 

CML, IMPACT 2002+, and ReCiPe methods. 

Among the alternative mixes, PET/steel fiber concrete exhibited the highest environmental burden-particularly in terms of CO₂ 

emissions and human health impacts-despite being relatively cost-effective. In contrast, nano-silica concrete, though 

environmentally competitive, was economically impractical due to the high cost of its components. Cement was found to be the 

most influential contributor to environmental damage across all mixes, with a 25% increase in content-raising impacts by up to 16%. 

Microsilica also showed notable influence, particularly in the PET and pumice-based mixes. The integrated analysis demonstrated 

that no single mix optimized all performance aspects. However, pumice concrete and ceramic/EAFS concrete provided moderate 

emissions with acceptable costs, offering more balanced alternatives. Ultimately, the findings highlight the trade-offs between 

environmental benefits and economic feasibility, emphasizing the need for context-specific mix selection in sustainable 

construction. 
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Appendix 

Table A- 1. LCA input data for conventional concrete in SimaPro, including materials, transport, energy, and CO₂ emissions. 

Raw materials, process and emission Amount Unit Input process 

Portland cement 430 kg Cement, Portland {RoW}| market for | APOS, U 

Water 215 L Tap water {RoW}| market for | APOS, U 

Gravel 845 kg Gravel, crushed {RoW}| market for gravel, crushed | APOS, U 

Sand 855 kg Sand {RoW}| gravel and quarry operation | APOS, U 

Cement packaging 430 kg Packing, cement {RoW}| processing | APOS, U 

Cement transportation 30.1 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, 

lorry 16-32 metric ton, EURO4 | APOS, U 

Gravel transportation 59.1 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, 

lorry 16-32 metric ton, EURO4 | APOS, U 

Sand transportation 59.8 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, 

lorry 16-32 metric ton, EURO4 | APOS, U 

Concrete production energy 157.9 KWh Electricity, medium voltage | market for | APOS, U 
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Factory carbon dioxide emissions 0.0033 kg Carbon dioxide 

Carbon dioxide emissions from workshop activities 

for concrete production 
0.0094 kg Carbon dioxide 

Table A- 2. LCA input data for pumice aggregate in SimaPro, including materials, transport, energy, and CO₂ emissions . 

Table A- 3. LCA input data for PET and steel fibers in SimaPro, including materials, transport, energy, and CO₂ emissions. 

Raw materials, process and emission Amount Unit Input process 

Portland cement 477 kg Cement, Portland {RoW}| market for | APOS, U 

Water 157 L Tap water {RoW}| market for | APOS, U 

Gravel 1.04 kg Gravel, crushed {RoW}| market for gravel, crushed | APOS, U 

Sand 95 kg Sand {RoW}| gravel and quarry operation | APOS, U 

Microsilica 53 kg Ferrosilicon {GLO}| market for | APOS, U 

PET waste 36.7 kg 
Waste polyethylene terephthalate, for recycling, sorted {RoW}| market for waste 

polyethylene terephthalate, for recycling, sorted | APOS, U 

Steel fibers 78.5 kg Steel fibers 

Cement packaging 477 kg Packing, cement {RoW}| processing | APOS, U 

Cement transportation 33.4 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, lorry 

16-32 metric ton, EURO4 | APOS, U 

Gravel transportation 0.07 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, lorry 

16-32 metric ton, EURO4 | APOS, U 

Sand transportation 6.6 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, lorry 

16-32 metric ton, EURO4 | APOS, U 

Microsilica transport 3.7 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, lorry 

16-32 metric ton, EURO4 | APOS, U 

PET waste transportation 2.6 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, lorry 

16-32 metric ton, EURO4 | APOS, U 

Steel fiber transportation 5.5 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, lorry 

16-32 metric ton, EURO4 | APOS, U 

Concrete production energy 157.9 KWh Electricity, medium voltage {IR}| market for | APOS, U 

Factory carbon dioxide emissions 0.0033 kg Carbon dioxide 

Carbon dioxide emissions from workshop 

activities for concrete production 
0.0094 kg Carbon dioxide 

 

 

Table A- 4. LCA input data for nanosilica pozzolan in SimaPro, including materials, transport, energy, and CO₂ emissions. 

Raw materials, process and emission Amount Unit Input process 

Portland cement 404.2 kg Cement, Portland {RoW}| market for | APOS, U 

Raw materials, process and emission Amount Unit Input process 

Portland cement 468.3 kg Cement, Portland {RoW}| market for | APOS, U 

Water 126.7 L Tap water {RoW}| market for | APOS, U 

Pumice 200.7 kg Pumice {GLO}| market for | APOS, U 

Sand 784.5 kg Sand {RoW}| gravel and quarry operation | APOS, U 

Microsilica 46.8 kg Ferrosilicon {GLO}| market for | APOS, U 

Lubricant 0.85 kg 
Plasticiser, for concrete, based on sulfonated melamine formaldehyde {GLO}| 

market for | APOS, U 

Cement batching 468.3 kg Packing, cement {RoW}| processing | APOS, U 

Cement transportation 32.8 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, 

lorry 16-32 metric ton, EURO4 | APOS, U 

Pumice transportation 14.0 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, 

lorry 16-32 metric ton, EURO4 | APOS, U 

Sand transportation 54.9 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, 

lorry 16-32 metric ton, EURO4 | APOS, U 

Microsilica transportation 3.3 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, 

lorry 16-32 metric ton, EURO4 | APOS, U 

Pumice transportation 0.06 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, 

lorry 16-32 metric ton, EURO4 | APOS, U 

Concrete production energy 157.9 KWh Electricity, medium voltage {IR}| market for | APOS, U 

Factory carbon dioxide emissions 0.0033 kg Carbon dioxide 

Carbon dioxide emissions from workshop activities 

for concrete production 
0.0094 kg Carbon dioxide 
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Water 215 L Tap water {RoW}| market for | APOS, U 

Gravel 855.5 kg Gravel, crushed {RoW}| market for gravel, crushed | APOS, U 

Recycled sand 793.1 kg RC Sand 

Nano-silica 25.8 kg Nanosilica 

Lubricant 0.4 kg 
Plasticiser, for concrete, based on sulfonated melamine formaldehyde {GLO}| 

market for | APOS, U 

Cement packaging 404.2 kg Packing, cement {RoW}| processing | APOS, U 

Cement transportation 28.3 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, 

lorry 16-32 metric ton, EURO4 | APOS, U 

Gravel transportation 599 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, 

lorry 16-32 metric ton, EURO4 | APOS, U 

Transportation of recycled sand 55.5 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, 

lorry 16-32 metric ton, EURO4 | APOS, U 

Nano-Silica Transportation 1.8 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, 

lorry 16-32 metric ton, EURO4 | APOS, U 

Lubricant transportation 0.03 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, 

lorry 16-32 metric ton, EURO4 | APOS, U 

Concrete production energy 157.9 KWh Electricity, medium voltage {IR}| market for | APOS, U 

Factory carbon dioxide emissions 0.0033 kg Carbon dioxide 

Carbon dioxide emissions from workshop activities 
for concrete production 

0.0094 kg Carbon dioxide 

Table A- 5. LCA input data for ceramic waste and EAFS in SimaPro, including materials, transport, energy, and CO₂ emissions.  

Raw materials, process and emission Amount Unit Input process 

Portland cement 448 kg Cement, Portland {RoW}| market for | APOS, U 

Water 215 L Tap water {RoW}| market for | APOS, U 

Gravel 445 kg 
Gravel, crushed {RoW}| market for gravel, crushed | 

APOS, U 

Sand 275 kg Sand {RoW}| gravel and quarry operation | APOS, U 

Ceramic 52 kg Ceramic tile {GLO}| market for | APOS, U 

EAFS 445 kg Electric arc furnace slag 

Cement packaging 448 kg Packing, cement {RoW}| processing | APOS, U 

Cement transportation 31.4 tkm 

Transport, freight, lorry 16-32 metric ton, EURO4 

{RoW}| transport, freight, lorry 16-32 metric ton, EURO4 
| APOS, U 

Gravel transportation 31.1 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 

{RoW}| transport, freight, lorry 16-32 metric ton, EURO4 

| APOS, U 

Sand transportation 19.2 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 

{RoW}| transport, freight, lorry 16-32 metric ton, EURO4 

| APOS, U 

Ceramic transportation 3.6 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 

{RoW}| transport, freight, lorry 16-32 metric ton, EURO4 

| APOS, U 

EAFS transportation 31.1 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 

{RoW}| transport, freight, lorry 16-32 metric ton, EURO4 

| APOS, U 

Concrete production energy 157.9 KWh Electricity, medium voltage {IR}| market for | APOS, U 

Factory carbon dioxide emissions 0.0033 kg Carbon dioxide 

Carbon dioxide emissions from workshop activities for concrete 
production 

0.0094 kg Carbon dioxide 

Table A- 6. LCA input data for asbestos cement corrugated sheets and rice husk ash waste in SimaPro, including materials, transport, 

energy, and CO₂ emissions. 

Raw materials, process and emission Amount Unit Input process 

Portland cement 425 kg Cement, Portland {RoW}| market for | APOS, U 

Water 215 L Tap water {RoW}| market for | APOS, U 

Gravel 522 kg Gravel, crushed {RoW}| market for gravel, crushed | APOS, U 

Sand 570.2 kg Sand {RoW}| gravel and quarry operation | APOS, U 

Asbestos cement sheet 387.2 kg Asbestos, crysotile type {GLO}| market for | APOS, U 

Rice husk ash 75 kg Rice husk ash (RHS) 

Lubricant 2.1 kg 
Plasticiser, for concrete, based on sulfonated melamine formaldehyde {GLO}| 

market for | APOS, U 

Cement packaging 425 kg Packing, cement {RoW}| processing | APOS, U 
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Cement transportation 29.7 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, 

lorry 16-32 metric ton, EURO4 | APOS, U 

Gravel transportation 36.5 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, 

lorry 16-32 metric ton, EURO4 | APOS, U 

Sand transportation 39.9 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, 

lorry 16-32 metric ton, EURO4 | APOS, U 

Asbestos cement sheet transportation 27.2 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, 

lorry 16-32 metric ton, EURO4 | APOS, U 

Rice husk ash transportation 5.2 tkm 
Transport, freight, lorry 16-32 metric ton, EURO4 {RoW}| transport, freight, 

lorry 16-32 metric ton, EURO4 | APOS, U 

Concrete production energy 157.9 KWh Electricity, medium voltage {IR}| market for | APOS, U 

Factory carbon dioxide emissions 0.0033 kg Carbon dioxide 

Carbon dioxide emissions from workshop activities 

for concrete production 
0.0094 kg Carbon dioxide 
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A  R  T  I  C  L  E I  N  F  O 

The Hamoun wetland, situated in southeastern Iran near the Afghanistan border, is a 

sensitive ecological and socio-economic area that has undergone significant land use and 

environmental changes over recent decades. This study applied the supervised CART 

classification method to identify Land Use/Land Cover (LULC) changes over 40 years  

(corresponding to 1990, 2000, 2010, and 2020) in the Hamoun region. Surface temperature 

data were analyzed regarding land use changes, and the Palmer Drought Severity Index 

(PDSI) was utilized to assess drought trends during this time.  The results indicate a 

significant decline in water bodies, agricultural lands, and reed beds. Specifically, the 

water bodies decreased from 11.25% in 1990 to 2.47% in 2020, agricultural lands from 

8.56% to 3.53%, and reed beds from 4.64% to 0.38%. Conversely, low-vegetation areas, 

barren lands, and urban areas expanded, with barren lands increasing by 14.05%. The 

overall classification accuracy for the LULC maps was approximately 96%, 96%, 95%, and 

98% for the respective years, and the Kappa coefficients were 0.97, 0.97, 0.96, and 0.98, 

indicating high classification accuracy.  Temperature trends declined during the study 

period, primarily due to severe droughts. The findings highlight a significant relationship 

between land use changes and surface temperature variations. This research provides 

valuable insights for policymakers and urban planners, supporting sustainable LULC 

strategies at the local level. 
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1. Introduction 

Land Use and Land Cover (LULC) changes play a significant role in global and regional climate pattern alterations, including 

rainfall variability and increases in Land Surface Temperature (LST) [1-4]. Human activities have extensively modified land surface 

utilization over the past centuries, significantly impacting terrestrial ecosystems and, consequently, the environment [5]. Rapid 

urbanization and population growth in urban centers are among the primary drivers of land use change. One of the major 

environmental issues observed across various regions is the rise in LST in response to land use transformations. LST is a critical 

variable that can be accurately measured using thermal infrared bands with high spatial resolution [6-9]. Therefore, identifying 

current LULC changes is essential for assessing variations in land surface temperature. 

Zhao et al. [10] investigated changes in land use and LULC, land surface temperature (LST), the Normalized Difference 

Vegetation Index (NDVI), and the Normalized Difference Built-up Index (NDBI) in the Kasur region over three decades. Their 

findings revealed an expansion of urban areas and a decline in vegetation, water bodies, forests, and barren land, with a negative 

correlation between NDVI and NDBI. Similarly, Saleem et al. [11] examined LULC changes in the Jammu region of India between 
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1990 and 2020 using remote sensing data, indicating increased agricultural, barren, and settlement areas alongside vegetation loss 

and rising LST due to climate change. NDVI was highlighted as an effective indicator of vegetation health and its impact on surface 

temperature. Hussainet al.  [12] analyzed LULC changes and their effect on LST in Khanewal, Pakistan, using remote sensing 

techniques. Their results demonstrated that the rapid expansion of built-up areas led to vegetation decline and temperature rise, 

primarily driven by population growth, urban development, and infrastructure expansion—findings that are valuable for regional 

planning and agricultural management. Moreover, Al Rakib et al. [13] studied the effects of rapid urban growth on LULC and LST 

in Mymensingh, Bangladesh. Their study found that urban expansion over the past two decades resulted in a loss of vegetation and 

water resources and an increase in surface temperature by approximately 8°C. Gohainet al.  [14] evaluated LULC and LST variations 

in Pune city from 1990 to 2019, concluding that rapid urban development contributed to increased summer temperatures and 

decreased winter temperatures. These findings are instrumental for urban planners in making informed decisions. In addition,  Tan 

et al. [15] investigated LULC changes in the Dongting Lake region of China, showing that economic development-induced land 

changes led to increased LST; built-up areas had higher surface temperatures than water bodies and forests, and the reduction of 

water surfaces, following the construction of the Three Gorges Dam, led to a 3.5°C increase in winter temperatures. 

Remote sensing (RS) techniques have been widely used to assess changes in land use/land cover (LULC) and land surface 

temperature (LST) in recent years through Landsat imagery [16]. RS offers several advantages, including accessibility to remote 

areas, provision of otherwise unattainable data, cost-effectiveness, and reduced need for fieldwork. Therefore, many researchers 

have utilized Landsat and MODIS data to estimate annual changes in LULC and LST. In contrast, traditional field-based studies are 

time-consuming, expensive, and often unsuitable for large-scale assessments [17]. LST variations are influenced by factors such as 

changes in land use, seasonal rainfall, climatic conditions, and socio-economic developments [18]. Alterations in land cover patterns 

are mainly driven by human activities [19], including wildfires [20] and deforestation [21], which contribute to global warming and 

soil erosion. Geostationary satellites, with their capability to provide data every 30 minutes, offer a unique resource for monitoring 

daily Earth surface changes. 

The Hamoun wetland, situated in southeastern Iran near the border with Afghanistan, is of high ecological and socioeconomic 

importance. Due to frequent droughts, upstream water management, and land use pressures, the area has experienced significant 

environmental degradation in recent decades. Understanding the drivers and impacts of such changes is essential for sustainable 

management.  The primary aim of the present study is to analyze and evaluate the temporal trends of LULC changes and their impact 

on land surface temperature (LST) in the Hamoun wetland during the years 1990, 2000, 2010, and 2020. Using satellite data and 

remote sensing techniques, this research seeks to identify spatial-temporal patterns of change to support sustainable environmental 

resource management in the region 

2. Materials and methods 

2.1. Study area 

The Hamoun Wetland is located between 60 degrees 39 minutes and 61 degrees 35 minutes Eastern longitude and 31 degrees 

15 minutes and 31 degrees 32 minutes Northern latitude. This wetland consists of lakes, ponds, and marshes, with its surface area 

constantly fluctuating and changing. The maximum area of Hamoun Wetland is approximately 5700 square kilometers, of which 

3820 square kilometers are located in Iran [22]. The depth range of the wetland varies between 1 to 7 meters. Hamoun contains 

mostly permanent, freshwater lakes. This region is situated in a dry and desert climate of Iran, with an annual rainfall of 

approximately 61 mm [23]. Geologically, it is part of the Helmand basin, a large portion of which is located in Afghanistan. Fig. 1 

shows the location of the study area. 

2.2. Data used 

To assess the trend of land use/land cover changes, Landsat 8 satellite images were obtained from the Earth Explorer website 

(earthexplorer.usgs.gov) and were prepared for necessary preprocessing and processing. The details of these images are provided in 

Table 1. 

For preparing the land use map on the acquired images, radiometric correction and atmospheric correction were performed [24]. 

After applying the necessary preprocessing steps, the land use classification map for the Hamoun region for the years 1990, 2000, 

2010, and 2020 was created in the GIS environment. Then, supervised classification using the CART model was applied. This 

method is recognized as a powerful yet simple tool [25, 26]. In fact, the analysis of complex data requires analytical methods that 

can control nonlinear relationships and interactions. CART is an invariant regression method. The advantages of using the CART 

method are: 

1. The use of a wide variety of variables, including categorical data, survival data, and ordinal data, 

2. Simplicity and robustness, 

3. Ease of decomposition, analysis, and interpretation, and 

4. The ability to handle missing data. 
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Fig. 1. Location of Hamoun wetland. 

 

Table 1. Specifications of the satellite images used. 

Gregorian Row/Path Satellite Sensor Spatial Resolution (Meters) 

1990 39/157 Landsat 5 TM 30 

2000 39/157 Landsat 5 TM 30 

2010 39/157 Landsat 5 TM 30 

2020 39/157 Landsat 5 TM 30 

Therefore, this method can serve as an alternative to traditional methods such as logistic regression, multiple regression, and 

logarithmic-linear models. The CART method was specifically chosen over other classification algorithms such as Support Vector 

Machines (SVM) and Random Forest due to its interpretability, lower computational cost, and strong performance on datasets with 

noise and limited sample sizes. This makes CART particularly suitable for analyzing land use changes in complex and ecologically 

sensitive regions like the Hamoun wetland.  The images for land use in the years 1990, 2000, 2010, and 2020 were classified into 

six land classes, including residential and built-up areas, agricultural land, pastures and low-cover areas, barren land, reed beds, and 

water bodies. The details of each of these land uses are provided in Table 2. Additionally, NDVI indices were used to estimate 

vegetation cover, as shown in Eq. 1 [27, 28]. 

NDVI =
NIR−R

NIR+R
  (1) 

NDWI =
B3−B5

B3+B5
  (2) 

 

Table 2. Details of land uses used in the study. 

Land Use Land Changes Explanations 

Residential and human-made areas Residential, commercial areas, transportation networks such as roads and rail networks 

Agricultural lands Dense vegetation cover, agricultural, orchard, and cultivated lands 

Pastures and lands with sparse vegetation Pastures, lands with sparse vegetation 

Wastelands Saline lands and areas without vegetation cover 

Water vegetation Vegetation cover in waterbeds 

Waterbeds Lakes, dams, semi-deep wells 

In Eq. 1, NIR represents the near-infrared band, R is the red band, and SWR refers to the shortwave infrared band. The values 

of these indices typically range between −1 and +1, where values closer to +1 indicate higher index levels. NDVI values range from 

−1 to +1 regardless of brightness, reflectance, or DN used as input. Generally, negative NDVI values correspond to water bodies, 

values close to zero are associated with rocks, sands, or concrete surfaces, and positive values indicate vegetative cover, including 
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plants, shrubs, grasses, and forests. Moreover, many researchers have utilized the Normalized Difference Vegetation Index (NDVI) 

to detect land cover changes, as it effectively distinguishes vegetation (positive values), bare soil (values near zero), and water 

bodies (negative values). 

In Eq. 2, B3 is the green band, which reflects visible light and is useful for detecting water; B5 is the near-infrared (NIR) band, 

which is strongly absorbed by water. The NDWI value ranges from -1 to +1, and values greater than zero typically indicate the 

presence of water bodies. 

After the completion of the land use maps and classification of the land uses, the accuracy of these land uses was evaluated. An 

error matrix was created to assess the accuracy of the generated land uses compared to the ground reality. In this matrix, the 

producer's accuracy, user's accuracy, overall accuracy, and Kappa coefficient were calculated [29]. The Kappa index considers the 

incorrectly classified pixels and calculates the classification accuracy relative to a completely random classification. The Kappa 

index was calculated using Eq. 3. 

𝐾𝑎𝑝𝑝𝑎 =
𝑃0−𝑃𝑐

1−𝑃𝑐
  (3) 

In this equation, 𝑃0 represents the observed accuracy, and Pc represents the expected agreement. 

2.3. Land use and land cover changes 

In this study, land use and land cover changes were examined by analyzing the changes in classified classes during the years 

1990, 2000, 2010, and 2020. Accordingly, the changes in various classes were calculated in terms of square kilometers and 

percentages. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 = (
A−B

B
) ∗ 100  (4) 

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 (𝑘𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟)  = (
A−B

𝐶
) ∗ 100  (5) 

In this equation, 𝐴 represents the area of land use and land cover in the second year, and 𝐵 represents the area of land use and 

land cover in the first year. Subsequently, land use changes during the years 1990, 2000, 2010, and 2020 were obtained. 

2.4. Land surface temperature data 

In climate change studies, one of the most significant indicators reflecting the impacts of climate change is the variation in land 

surface temperature. Therefore, in this research, to assess the impact of land use on changes in land surface temperature, data from 

the MODIS satellite under the product name MOD11A2 with a spatial resolution of one kilometer and 8-day temporal intervals for 

the years 1990, 2000, 2010, and 2020 were extracted from the Earth Data website. The MODIS satellite includes two sensors, Aqua 

and Terra, which provide long-term datasets with similar land physical parameters for climate and global change studies [30]. 

2.5. Palmer drought severity index (PDSI) 

The Palmer Drought Severity Index (PDSI) is another widely used drought index for monitoring hydrological droughts and is 

increasingly applied to assess the impacts of climate change [31, 32]. This index is calculated based on temperature, precipitation, 

and soil moisture data [33]. Table 3 shows the range of PDSI values, which typically vary between -4 and +4 [34]. 

Table 3. Palmer Drought Severity Index (PDSI) classification. 

Drought Range Drought Classification 

<-4 Severe Drought 

(-4, -3) Moderate Drought 

(-3, -2) Mild Drought 

(-2, -1) Normal Wetness 

(-1, +1) Slightly Wet 

(+1, +2) Moderately Wet 

(+2, +3) Very Wet 

(+3, +4) Extremely Wet 

3. Results 

3.1. Land use changes from 1990 to 2020 

The results of the study on land use change over 40 years from 1990 to 2020 are presented in Fig. 2 and Table 4. This study 

showed that residential areas in the years 1990, 2000, 2010, and 2020 were 0.04%, 0.10%, 0.20%, and 0.30%, respectively, 

indicating an increasing trend over this period. Additionally, barren lands in 2010 and 2020 were 6714.22 km² and 7166.79 km², 

respectively, and pastures and lands with sparse vegetation had the largest area during these years, with 13460.84 km² and 14471.50 
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km², respectively. Over these four decades, reed beds had the smallest area, with 4.64%, 3.14%, 2.27%, and 0.38%, respectively. 

Moreover, water bodies decreased from 2607.17 km² in 1990 to 573.17 km² in 2020. 

 

Fig. 2. Land use change map for 1990, 2000, 2010, and 2020 Hamun wetland. 

 

3.2. Accuracy assessment of Hamun land use classes from 1990 to 2020 

The evaluation of the accuracy of the Hamun land use maps over 40 years from 1990 to 2020, as shown in Table 4, revealed 

that the Kappa coefficient was 0.97%, 0.97%, 0.96%, and 0.98% for each year, and the overall accuracy was approximately 96%, 

96%, 95%, and 98%, respectively. The results of the accuracy estimation for six land use classes—barren lands, pastures and lands 

with sparse vegetation, reed beds, agriculture, water bodies, and residential areas in the Hamun Lake basin from 1990 to 2020—

indicated that the overall accuracy was above 95% and the Kappa coefficient was above 94%, demonstrating sufficient accuracy in 

the produced land use maps (Table 4). 

In this study, the analysis of land use changes in the study area showed that the percentage of barren lands, residential and human-

made areas, pastures, and lands with sparse vegetation increased over the four decades. In contrast, the percentage of agricultural 

lands, reed beds, and water bodies decreased from 8.56%, 4.64%, and 11.25% in 1990 to 3.53%, 0.38%, and 2.47% in 2020, 

respectively. 

Between 1990 and 2000, a decrease in agricultural lands, pastures, and lands with sparse vegetation, and water bodies was 

observed. Specifically, barren lands, residential and human-made areas, and reed beds increased by 21.28%, 0.06%, and 9.39%, 

respectively. Furthermore, between 2000 and 2010, pastures and lands with sparse vegetation, residential and human-made areas, 

and reed beds were on the rise. However, during this period, agricultural lands, barren lands, and water bodies decreased by -0.88%, 

-9.19%, and -0.87%, respectively. Between 2010 and 2020, reed beds and water bodies showed a decreasing trend of -3.48% and -

1.91%, respectively. On the other hand, agricultural lands, pastures and lands with sparse vegetation, barren lands, and residential 

Table 4. Accuracy assessment of land use classes for the years 1990, 2000, 2010, and 2020, Hamun wetland. 
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Agriculture 0.95 0.96 

0.97 

 0.99 0.95   0.97 0.96   1 0.96   

SaltLand 0.95 0.98  0.94 0.99   0.94 0.99   0.92 0.98   

BarreLand 0.97 0.98 0.96 0.94 0.98 0.97 0.96 0.97 0.97 0.96 0.95 0.92 0.97 0.98 0.98 

Urban 1 0.93  1 0.92   1 0.94   1 0.93   

WaterVegetation 0.97 0.97  0.99 0.99   0.97 0.97   1 0.94   

WaterBodies 1 0.97  1 0.96   0.99 0.97   1 0.96   
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areas increased. 

Overall, from 1990 to 2020, the trend in land use changes for pastures and lands with sparse vegetation, barren lands, and 

residential and human-made areas increased by 3.88%, 14.05%, and 0.16%, respectively, while agricultural lands, reed beds, and 

water bodies decreased by -5.04%, -8.78%, and -4.27% (Table 5). 

During the years 2000–1990, out of 100 percent of agricultural lands, 48 percent were converted to pastures and lands with 

sparse vegetation, and out of 100 percent of water bodies, 68 percent were converted to pastures and lands with sparse vegetation, 

Moreover, out of 100 percent of reed beds, 51 percent were converted to pastures and lands with sparse vegetation, whereas during 

the years 2020–2010, out of 100 percent of agricultural lands, 42 percent were converted to pastures and lands with sparse vegetation, 

out of 100 percent of water bodies, 57 percent were converted to pastures and lands with sparse vegetation, and out of 100 percent 

of reed beds, 78 percent were converted to barren lands. Additionally, during the years 1990–2020, out of 100 percent of agricultural 

lands, 50 percent were converted to pastures and lands with sparse vegetation, out of 100 percent of water bodies, 53 percent were 

converted to pastures and lands with sparse vegetation, and out of 100 percent of reed beds, 50 percent were converted to barren 

lands and 45 percent to pastures and lands with sparse vegetation (Fig. 3). 

 

Fig. 3. Rates and percentage areas of land use changes from 1990 to 2020 in the Hamoun wetland. 

The results showed that the NDVI decreased from 1990 to 2010 due to water scarcity and the expansion of barren lands (Fig. 4). 

The results also indicate that the water bodies had the highest extent in 1990, but showed a decreasing trend in 2000, 2010, and 

2020 due to the onset of drought (Fig. 5). 

Table 5. Rate and percentage of area changes in hamun wetland land uses from 1990 to 2020. 

Land Use Types 1990-2000% 2000-2010 2010-2020 1990-2020 

Agricultural Land -3.44 -0.88 -0.72 -5.04 

Pastures and Lands with Sparse Vegetation -7.02 6.75 4.14 3.88 

Barren Lands 21.28 -9.19 1.95 14.05 

Residential and Human-Made Areas 0.06 0.09 0.00 0.16 

Water Vegetation 9.39 4.09 -3..48 -8.78 

Water Bodies -1.50 -0.87 -1.91 -4.27 
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Fig. 4. Normalized difference Vegetation Index (NDVI) in the years 1990, 2000, 2010, and 2020 in the Hamoun wetland. 

 

 

Fig. 5. Water Body index in the years 1990, 2000, 2010, and 2020 in the Hamoun wetland. 

3.3. Land surface temperature (LST) 

The main issue for government managers in the contemporary context of global warming is the increase in LST in urban areas 

[35]. As shown in Fig. 6, the highest average daytime temperature in 2000 (Fig. 6(a)) corresponds to barren lands and reed beds, 

while the lowest average temperature is observed in water bodies. In the same year (2000), the highest average nighttime temperature 

(Fig. 6(d)) is found in barren and urban areas, and the lowest is in reed beds. In 2010 (Fig. 6(c)), the highest and lowest average 

daytime temperatures are recorded in barren lands and water bodies, respectively. For the same year, the highest nighttime 

temperature (Fig. 6(e)) is seen in water bodies, while the lowest is in barren lands.  In 2020 (Figs. 6(c) and 6(f)), both daytime and 

nighttime average temperatures across all land cover types show a decreasing trend. The highest average daytime temperature is 

found in barren lands, while the lowest is in water bodies (Fig. 6(c)). Conversely, the highest nighttime temperature is seen in water 

bodies and the lowest in rangelands and sparsely vegetated lands (Fig. 6). 
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Fig. 6. (a), (b), and (c) Land Surface Day Temperature, (d), (z), and (r) Land Surface Night Temperature in the years 2000, 2010, and 

2020 in the Hamoun Wetland. 

3.4. Palmer drought severity index 

According to the results obtained in Fig. 7, continuous droughts were observed from 1990 to 2020. The results presented in Fig. 

8 showed that in 1990, the highest percentage was moderate wet conditions (88.04%), while the lowest percentage was normal 

drought (11.96%). Additionally, in 2000, the highest amount of drought, including severe, moderate, and mild drought, was 

observed, with percentages of 0.14%, 36.93%, and 62.93%, respectively. Then, in 2010, moderate drought (34.51%) and mild 

drought (65.49%) had the highest percentages. Finally, in 2020, four classes were evaluated in the region: moderate wet, mild, very 

wet, and extremely wet, with the highest percentage being very wet (42.31%), as identified in Fig. 7. 

 

Fig. 7. Palmer drought index for the years 1990, 2000, 2010, and 2020 in Hamoun wetland. 
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Fig. 8. Palmer drought index for the years 1990, 2000, 2010, and 2020 in Hamoun wetland. 

The drought indices in 2000 and 2010 show moderate, normal, and extended droughts. As shown in Fig. 8, a significant drying 

of the water body occurred in 2000. Additionally, moderate wet conditions were observable in 1990, and more severe wet conditions 

occurred in 2010. With the land use changes, a decrease in temperature in the studied area was observed, which is due to the droughts 

that occurred over these four decades. 

4. Discussion 

The results of the land use change analysis using satellite images in the study area showed that over these forty years, the trend 

of water bodies, agricultural lands, and reed beds decreased, while barren lands, pastures, areas with sparse vegetation, and cities 

increased. This aligns with the results of Safari Shad et al. (2000). In other words, over time, with the reduction of water bodies, the 

amount of agricultural lands and reed beds decreased, but pastures, barren lands, and urban areas increased. Due to the increase in 

barren lands, conditions suitable for soil erosion potential arise, leading to massive 120-day dust storms blowing from the wetland 

to the residential areas [36]. On the other hand, Maleki and Koupaei [37] indicated that between 1985 and 2020, in the Hamun 

wetland, water flowed only 20% of the time, and on average, for less than two months between 1985 and 2020. It also shows that 

due to repeated droughts and reduced water inflows to Iran, parts of the water bodies have completely dried up. In these years, 

farmers, livestock herders, fishermen, and wildlife have been harmed [37]. These issues highlight the importance of restoring the 

Hamun wetland. Furthermore, with the reduction of barren lands, the potential for soil erosion has also decreased. The surface 

temperature analysis results show a significant decreasing trend from 1990 to 2020, attributed to the ongoing droughts during this 

period. 

The study of climate change trends conducted by Karami et al. [38] indicates a decrease in water reserves. Therefore, the findings 

of this study show a reduction in water reserves in this wetland due to drought. 

The results of the studies by Haji Hosseini et al. [39] regarding land use changes downstream of the Kajaki Dam in Afghanistan 

showed that the increase in the area under cultivation of agricultural products is one of the reasons for the decrease in the runoff 

entering Iran from the Helmand River, leading to a reduction in the cultivated area and an increase in barren lands. 

According to these results, there is a direct relationship between land use changes and the lives of stakeholders. Sharif Nia et al. 

[40] examined the situation of stakeholder groups (livestock herders, farmers, etc.) regarding their connection to the wetland and 

found that stakeholders considered the restoration of this wetland essential for their livelihoods and it has a significant impact on 

the local population's lives. 

5. Conclusion 

The present study was conducted to examine the trend of land use changes and their effect on land surface temperature (LST) in 

the Hamoun wetland from 1990 to 2020 using Geographic Information Systems (GIS) and remote sensing. Landsat 5 and 8 images 

were used for analyzing the land use changes. Additionally, annual temperature data were used to examine temperature changes, 

and the Palmer Drought Severity Index (PDSI) was utilized to assess drought conditions. 

Overall, the land use changes in the Hamoun wetland were analyzed over four decades using the supervised classification method 

(CART), which showed a high Kappa coefficient of over 94%. The results of the current study indicate that the area of water bodies 

has decreased, leading to a reduction in agricultural lands and reed beds. As a result of these changes, pastures, areas with sparse 

vegetation, barren lands, and urban areas have shown an increasing trend. Furthermore, land surface temperature has shown a 

significant decreasing trend due to the occurrence of droughts over these decades. In general, the area of water bodies, reed beds, 

agricultural lands, and the average land surface temperature have decreased. 

Thus, by using Landsat 5 and 8 images, the trend of land use changes can be effectively assessed, and by using MODIS images, 

the changes in land surface temperature can be accurately estimated. The Hamoun wetland is considered one of the important areas 

of the country from social, economic, and environmental perspectives. The shortage of incoming water resources and water bodies, 
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along with the drying up of the wetland, has led to the migration of many people from the border areas. Afghanistan's activities 

upstream of the Helmand River have had an impact on the water resources entering Iran's basin. During drought periods, due to the 

lack of water resources and the increase in barren lands, very few farmers and livestock herders have been able to use the area. 

Due to the water shortage in the studied region, the conditions have become very challenging, especially for stakeholders in 

agriculture, which has created migration conditions for these stakeholders. According to the presented results, the changes in the 

extent of water bodies have affected other land uses. Therefore, the preservation and restoration of the Hamoun wetland and the 

management of water resources are crucial for the living conditions in the region. 
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A  R  T  I  C  L  E I  N  F  O 

In this study, the bending vibration of a fatigue-cracked beam and associated constraint 

conditions have been solved by implementing the Homotopy Perturbation Method. A 

structure with a single degree of freedom, varying stiffness, and a periodic function is 

employed to simulate the dynamic behavior of the beam. The crack is represented as an 

ongoing disturbance function within the displacement field, which could be obtained from 

fracture mechanics. The governing equation's solution shows the super harmonics of the 

dominant frequency, resulting from nonlinear impacts on the dynamic vibration response 

of the cracked beam. The proposed method gives an analytical closed-form solution that 

can be easily used to analyze and design structures dynamically. The outcomes show that 

growing crack depth reduces the natural frequencies of a cracked beam. Moreover, 

increasing the severity of the crack and moving its location toward the center of the beam 

increases the system's damping. Perturbation methods rely on a small parameter, which is 

challenging to determine for real-life nonlinear problems. To overcome this shortcoming, 

a powerful analytical method is introduced to solve the motion equation of the cracked 

beam. 
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1. Introduction 

Mathematical modeling of beams and frames, incorporating various theories and effects, is a vital study area within structural 

engineering [1, 2]. This applied topic plays a crucial role in understanding and predicting the behavior of structural components 

under diverse loading conditions [3]. Numerous scientific issues and phenomena, including the vibration of a beam with fatigue 

cracks, occur in nonlinear models [4-6]. Identifying analytical solutions for these problems is challenging. Cracks are typically 

detected using a nonlinear approach that monitors variations in the dynamic response features, like natural frequencies, damping, 

and mode shapes [7–9]. In the analysis of linear vibrations in a cracked beam, the beam crack is assumed to stay open during the 

beam's vibrations [10, 11]. These linear vibration methods often fail to produce practical results due to low defect sensitivity. Ke et 

al. [12] examined how open-edge crack parameters affect free vibration and buckling features of cracked beams composed of 

functionally graded materials. The nonlinear performance of a cantilevered cracked beam modeled with bilinear stiffness under 

harmonic excitation was investigated to deliberate the crack closure effects [13, 14]. Kisa and Brandon [15] employed a bilinear 

stiffness model to assess the variations in beam stiffness at the crack position. They presented the contact flexural stiffness matrix 

within a finite element (FE) model to effectively simulate the impact of crack closure, which was integrated into the initial flexural 

stiffness matrix at the crack site during a half-cycle of shaking. This stiffness matrix deliberates only two conditions: entirely open 

and entirely closed states of the crack. Under this assumption, the assumed cracked beam exhibits just dual stiffness values: a more 

significant value for the closed crack state and a smaller value for the wide crack state. This approach suggests that the crack expands 

and contracts instantaneously. The experimental tests show that the transition between closed and open cracks, and contrarily, 

happens more smoothly [16]. Abraham and Brandon [17] have modeled the changes in stiffness at the position of the breathing 

crack by using several expressions of the Fourier transform series. 
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Cheng et al.  [18] have examined a single degree of freedom (SDOF) cracked cantilever beam through time-varying stiffness to 

investigate frequency-forced vibration behavior. The time-varying stiffness of the beam is shown as a regular periodic function. 

They presumed that the damping ratio of the flexural cracked beam is 0.01 and obtained forced vibration responses of the cracked 

beam through the numerical Runge-Kutta technique. Likewise, they stated that using an open crack model for crack detection does 

not provide high accuracy in monitoring fundamental frequency and tends to underestimate the severity of the crack. Following a 

similar methodology, Ariaei et al. announced a technique to assess the dynamic Euler-Bernoulli undamped beams with the effect of 

breathing cracks subjected to a moving point mass [19]. This approach utilizes the discrete element technique in conjunction with 

the FE method. Researchers have similarly employed signal processing methods to establish the above-mentioned model for beam 

crack detection [20, 21]. Zhang and Testa experimentally explored the closure properties of the vibration response of a fatigue-

cracked T-style steel structure [22]. Bovsunovsky and Surace investigated the super harmonic vibration of a flexural cracked 

cantilever beam caused by the nonlinear effects of crack closure [23]. They clarified that these nonlinear effects create considerable 

challenges in achieving analytical solutions. Consequently, they employed a FE model, enabling the prediction of alterations in 

damping due to the cracked beam. They exhibited that nonlinear effects in the vibration response depend on the crack parameters 

and the damping scale in the vibrating system. In another work, Curadelli et al. employed changes in system damping to identify 

structural damage through wavelet analysis [24]. Dimarogonas provided valuable, detailed surveys on crack modeling approaches, 

emphasizing the importance of utilizing practical numerical models in the diagnostic method [25]. The cracked beam's analytical 

response presents valuable physical insights into the issue at hand, allowing for an easy assessment of how all parameters affect the 

solution. Rezaee and  Hassan Nejad [26] applied an analytical method, the perturbation method, to solve the motion equation of a 

cracked beam. They demonstrated that the dynamic response of the cracked beam takes the form of an exponential function and a 

nonlinear oscillatory behavior function. The exponential part of the reaction introduces the decay rate due to the system damping, 

and the oscillatory portion is the solution of the Mathieu formula, showing super harmonics of the beam's dominant frequency. They 

also showed that the system response's damping rate can be derived from the constants of the Mathieu equation. 

A recent study of contemporary structural health monitoring evaluates infrastructure using high-resolution imaging techniques 

to identify and measure defects like cracks. Structural engineers rely on this data to refine structural models and assess the safety 

and integrity of the structures . The practical use of cracked beams is a critical indicator of structural integrity in various applications. 

By monitoring cracks in beams, engineers can assess the extent of deterioration over time. This is particularly important in civil 

engineering, where infrastructure such as bridges and buildings must remain safe and functional. Regularly monitoring cracked 

beams enables timely maintenance interventions and helps prevent catastrophic failures. Additionally, data gathered from cracked 

beams can inform predictive maintenance strategies, ensuring that resources are allocated efficiently and that infrastructure remains 

reliable for public use [27]. An experimental study examined the relationship between crack propagation and deflection in reinforced 

concrete beams. A four-point loading test was conducted on specimens with varied reinforcement ratios and concrete cover 

thicknesses [28]. 

As is well known, perturbation methods rely on a small parameter, which is often challenging to determine for real-life nonlinear 

phenomena problems. In this paper, to overcome this shortcoming, a novel, robust analytical technique is presented to solve the 

governing equation (GE) of motion of the fatigue-cracked beam. The Homotopy Perturbation Method (HPM) deforms a complex 

problem and turns it into an easily solvable issue. The analytical results for a specified case are compared with typical experimental 

and numerical methods to validate. This method gives an analytical solution for the nonlinear cracked beam equation, which does 

not need meshing like the numerical method. Also, this method's result is proposed in the closed-form formula, which can be easily 

used for further structural evaluations. 

2. Mathematical modeling 

In practical terms, cracked beams are central to a wide range of applications, from ensuring safety in infrastructure and buildings 

to informing design processes and enhancing material performance. Understanding cracked beams allows engineers and 

construction professionals to make informed decisions that improve safety and longevity. According to beam crack modeling, the 

model conforms to the Euler-Bernoulli assumptions and is excited in its first frequency mode. This assumption is valid when the 

beam is subject to the initial mode by ignoring the contributions of the higher modes. 

This mathematical modeling introduces a practical and credible model for examining the nonlinear dynamic characteristics of 

an SDOF fatigue-cracked beam. The beam's equivalent mass is located at its center in this model. For better visualization, see the 

beam's stiffness by the variations in location and depth of the crack (see Fig. 1). Consequently, the disparity of the flexibility of the 

beam as a result of the crack is assessed. Then, the change in the equivalent stiffness of the fatigue-cracked section through the 

vibration is assumed to be a time-varying function. However, the lumped parameters of the structure are decisive. 

2.1. Assess the flexibility of a beam supported by pins with a crack 

Assuming a bending moment is exerted on a fatigue-cracked beam, it will also experience additional rotation due to the crack. 

The extra rotation at the crack position is proportional to the beam flexure. According to Castigliano’s theorem, 𝑈𝑇  is the crack's 

strain energy, and the additional rotation takes the following form [29]: 
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Fig. 1. (a) The pinned-supported fatigue-Cracked beam with a specified damage location, and (b) The schematic SDOF mass, spring, 

and damping model. 

 

𝜃 =
𝜕𝑈𝑇

𝜕𝑀
  (1) 

The strain energy is presented in the form below [30]: 

𝑈𝑇 = ∫ 𝜍𝑠(𝛼)𝑑𝛼
𝐶𝑟𝑎𝑐𝑘

  (2) 

This equation is called the Paries’ Equation. The integral in Eq. 2 is an integral over a surface as follows [23]: 

𝑈𝑇 = ∫ ∫ 𝜍𝑠(𝛼)𝑑𝛼𝑑𝑦
𝑎

0

𝑤

2

−
𝑤

2

  (3) 

where the crack depth notation is 𝑎, also 𝜍𝑠 is the strain energy density, obtainable from the subsequent equation [31]: 

Plane strain: 𝜍𝑠 =
1−𝜈2

𝐸
[𝐾𝐼

2 + 𝐾𝐼𝐼
2 +

𝐾𝐼𝐼𝐼
2

1−𝜈
] 

(4) 

Plane stress: 𝜍𝑠 =
1

𝐸
[𝐾𝐼

2 + 𝐾𝐼𝐼
2 + (1 + 𝜈)𝐾𝐼𝐼𝐼

2 ] 

In the above formulas 𝐸 and 𝜈respectively are Young’s modulus and Poisson’s ratio. In this paper, the plain strain assumption 

is used. In addition, in Eq. 4, 𝐾𝐼 , 𝐾𝐼𝐼 ,and 𝐾𝐼𝐼𝐼are the Stress Intensity Factors (SIF) related to the fracture modes. In fracture mechanics, 

the SIF are established for a beam of unit thickness containing a transverse crack [22]. The intensity of stress concerning a single-

edge crack under pure bending is: 

𝐾𝐼 = 𝜎0√𝜋𝑎𝐹𝐼 (
𝑎

ℎ
)  (5) 

𝜎0 =
6𝑀

𝑤ℎ2  (6) 

𝜍𝑠 =
1−𝜈2

𝐸
𝜎0

2𝜋𝑎𝐹𝐼
2(𝛼), 𝐹𝐼(𝛼) = 1.12 − 1.4𝛼 + 7.33𝛼2 − 13.4 𝛼3 + 14 𝛼4  (7) 

By substituting Eq. 7 into Eq. 3 and integrating over the crack surface, the amount of the strain energy 𝑈𝑇  can be obtained as: 

𝑈𝑇 =
36 𝜋 (1−𝜈2)

𝐸

𝑀2

𝑤ℎ2 𝑔(𝛼)   (8) 

where 

𝑔(𝛼) = 19.6 𝛼10 − 40.7556 𝛼9 + 47.1063 𝛼8 − 33.051 𝛼7 + 20.2948 𝛼6 − 9.9736 𝛼5 + 4.5948 𝛼4 −
1.04533 𝛼3 + 0.6272 𝛼2  

(9) 

Conversely, the alterations in the beam's flexibility produced by the crack resulted from the formula presented by Dimarogonas 

and Paipatis [29]: 

𝛥𝐶 =
𝜕2𝑈𝑇

𝜕𝑃2 =
18 𝐿0

2𝜋(1−𝜈2)

𝐸𝑤ℎ2 𝑔(𝛼)  (10) 

This equation calculates the changes in flexibility of a pinned-supported beam caused by the crack. 
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2.2. Finding the motion GE 

Assume a uniform pinned-supported beam with a length 𝐿, which is shown in Fig. 1. The crack depth is presented as 𝑎, and it is 

situated at a distance of 𝐿0 from the beam's left end. The beam cross-section’s width and height are w and h, respectively. It is 

assumed that the beam vibrates at its fundamental frequency mode. So, the flexurally fatigued cracked beam can be modeled as an 

SDOF. The crack is modeled as a fatigue crack with breathing behaviors. Henceforward, the beam stiffness will change through the 

vibration caused by the crack's opening and closing, and the beam's dynamic response will have a nonlinear characteristic. 

To achieve the equivalent mass and stiffness of the system, the initial mode shape of the beam is considered to take the form 

below [32]: 

𝛷(𝑥) = 𝑠𝑖𝑛 (
𝜋𝑥

𝐿
)  (11) 

Additionally, the beam stiffness for the scenario of an entirely closed crack is provided by [33]: 

𝑘𝑐 =
1

𝐶
= ∫ 𝐸𝐼

𝐿

0
𝛷″2(𝑥) 𝑑𝑥 =

𝜋4𝐸𝐼

2𝐿3   (12) 

where 𝑘𝑐  and 𝐶 represent the stiffness and flexibility of the fatigue-cracked beam once the crack is completely closed, 𝐸𝐼 is the 

bending rigidity. Additionally, the notation of the beam's stiffness once the crack model is completely open is 𝑘𝑜 = 1 𝐶𝑜⁄ , and 𝐶𝑜 is 

the flexibility for the completely open beam’s crack as: 

𝐶0 = 𝐶 + 𝛥𝐶  (13) 

As previously noted, the flexural Fatigue-Cracked beam's vibration changes the system's equivalent stiffness due to the crack's 

opening and closing. Thus, the following time-varying function can be employed to model the equivalent stiffness variations of the 

SDOF structure[19]: 

𝑘(𝑡) = 𝑘0 + 𝑘𝛥𝑐  [1 + 𝑐𝑜𝑠(𝜔𝑏𝑡)]     (14) 

In the above formula, 𝑘𝛥𝑐  represents the amplitude of changes in equivalent stiffness in the following form: 

𝑘𝛥𝑐 =
1

2
(𝑘𝑐 − 𝑘𝑜)  (15) 

Eq. 14 states that the cracked beam at the static equilibrium position of the beam has a stiffness that represents the average of 

the maximum stiffness values for both entirely open and entirely closed crack scenarios. Consequently, as the beam vibrates and 

moves up and down around its equilibrium position, its equivalent stiffness fluctuates around this average value. It is logical to 

assume that when the beam is displaced in the direction that begins to open the crack, its stiffness gradually decreases; conversely, 

moving the beam in the opposite direction continuously increases stiffness. In Eq. 14, 𝜔𝑏 is the crack breathing frequency, and for 

the case of a fully closed crack, (𝑘(𝑡) = 𝑘𝑐), we have 𝜔𝑏𝑡 = 2 𝑛 𝜋, 𝑛 = 1,2,3, … . and for the case of a fully open crack (𝑘(𝑡) =
𝑘0), we have 𝜔𝑏𝑡 = (2 𝑛 − 1) 𝜋, 𝑛 = 1,2,3, … . The breathing frequency can be approximated as [34]: 

𝜔𝑏 =
2𝜔𝑐𝜔𝑜

𝜔𝑐+𝜔𝑜
  (16) 

where 𝜔𝑜 = √𝑘𝑜 𝑚⁄ , and 𝜔𝑐 = √𝑘𝑐 𝑚⁄  are the frequencies of the cracks that relate to completely open and closed crack cases. Eq. 

16 suggests that the system's dominant frequency consistently lies between the open and closed crack cases. 

In the above equations, the fraction 𝑚𝜔𝑏
2 can be written in terms of 𝑘𝑐  and 𝑘𝑜as: 

𝑚𝜔𝑏
2 =

4 𝑘𝑜𝑘𝑐

𝑘𝑜+𝑘𝑐+2√𝑘𝑜𝑘𝑐
  (17) 

In addition, to determine the beam's equivalent mass, one could proceed as follows: 

𝑚 = ∫ 𝑚(𝑥)
𝐿

0
𝛷2(𝑥)𝑑𝑥 = 0.5 𝑚̄𝐿      (18) 

The mass per unit length of the beam is 𝑚̄. Taking into account c as the damping equivalent coefficient for the SDOF model of 

the damaged beam (refer to Fig. 1) and integrating the lumped modal parameters such as equivalent mass and time-varying flexural 

stiffness, we derive the GE of motion as: 

𝑚𝑧̈ + 𝑐𝑧̇ + {𝑘𝑜 + 𝑘𝛥𝑐 [1 + 𝑐𝑜𝑠(𝜔𝑏𝑡)]}𝑧 = 0  (19) 

An analytical solution for the equation mentioned above has not been reported, and there are numerical solutions that assume a 

constant damping coefficient [18]. 

By utilizing the subsequent variable change: 
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𝑡 =
2𝜏

𝜔𝑏
,

𝑑𝑧

𝑑𝑡
=

𝜔𝑏

2

𝑑𝑧

𝑑𝜏
,

𝑑2𝑧

𝑑𝑡2 =
𝜔𝑏

2

4

𝑑2𝑧

𝑑𝜏2  (20) 

and replacing the above relations into Eq. 19, and dividing Eq. 19 by 
4 𝑚

𝜔𝑏
2  and rearranging the equation, it becomes: 

𝑑2𝑧(𝜏)

𝑑𝜏2 + 4𝜉
𝑑𝑧(𝜏)

𝑑𝜏
+ [𝛿 + 4𝜉2 + 2𝜀 𝑐𝑜𝑠(2𝜏)] 𝑧(𝜏) = 0      (21) 

where, 𝛿, 𝜀 and 𝜉 are non-dimensional parameters and damping ratio, respectively, which are defined as: 

𝜀 =
2𝑘𝛥𝐶

𝑚 𝜔𝑏
2 =

𝑘𝑐−𝑘𝑜

𝑚 𝜔𝑏
2 , 𝜉 =

𝑐

2 𝑚 𝜔𝑏
, 𝛿 =

4 (𝑘𝑜−𝑘𝛥𝐶)

𝑚 𝜔𝑏
2 − 4 𝜉2 =

2(𝑘𝑜+𝑘𝑐)

𝑚𝜔𝑏
2 − 4𝜉2      (22) 

This equation exhibits a stable periodic solution when δ is expressed in terms of ε (with ε being much less than 1) as: 

𝛿 = ∑ 𝐺𝑖𝑝
𝑖∞

𝑖=0   (23) 

where 𝐺0  is an integer number (𝐺0  = 0, 1, 2, …) and 𝑝 ∈ [0,1] is an embedding parameter, and 𝐺𝑖(𝑖 = 1,2,3, . . . , ∞) represented as 

the unknown expansion coefficients, which will be determined later. For each value of𝐺0one can acquire the corresponding 

expansion coefficients, thus, the associated transition curves. Each individual point on the curves represents a stable and periodic 

result to Eq. 21 (Fig. 2). In this illustration, the hatched regions indicate the unstable areas. 

 
Fig. 2. The Transition curves distinguish among the regions of stability and instability plane. The hatched areas represent the 

unstable region [34]. 

By substituting Eq. 17 into Eq. 22, and using relations𝑘𝑜 = 1 𝐶𝑜⁄  and 𝑘𝑐 = 1 𝐶⁄ ,𝜀 and 𝛿 are obtained as: 

𝜀 =
𝜒2+2𝜒(1+√1+𝜒)

4(1+𝜒)
, 𝜒 =

𝛥𝐶

𝐶
  (24) 

𝛿 =
8+2 𝜒2+8 𝜒+4 (2+𝜒)(√1+𝜒)

4 (1+𝜒)
− 4 𝜉2  (25) 

It's evident from Eq. 24 and 25 that 𝜀 and 𝛿 are functions of 𝜒 and the damping ratio denoted by 𝜉. For a periodic result to the 

motion equation (Eq. 21), the 𝜀 − 𝛿 curve needs to align via a transition curve. Then, the variation limits of 𝜒 should be established 

since the Mathieu equation features a periodic solution. 

3. The HPM for solving the motion equation 

An analytical relation exists between a cracked beam's damping ratio and crack parameters. This division presents an analytical 

method for the free vibration of the supported beam. The initial conditions used for the solution of Eq. 21 are regarded as 𝑧(0) = 1 

and 𝑧̇(0) = 0. The initial conditions relate to the deformation of the equivalent mass from its equilibrium position by a distance of 

𝐴, and the primary velocity of −𝐴𝑐 2𝑚⁄ . 

As noted in the previous section, the Motion equation should have a periodic solution any time 𝛿 can be expressed in terms of 𝜀 

as stated by Eq. 23. In Fig. 2, 𝐺0  should be equal to 2. 

 In this letter, we apply the HPM to solve the discussed problem. The structure of the HPM is shown as follows: 

(𝑣, 𝑝) = 𝐿(𝑣) − 𝐿(𝑧0) + 𝑝𝐿(𝑧0) + 𝑝[𝑁(𝑣) − 𝑓(𝑟)] = 0,      (26) 

The notations 𝑣(𝑟, 𝑝): 𝛺 × [0,1] → 𝑅, L represents the linear, N represents the nonlinear part of the differential equation and 

𝑓(𝜏)is a known analytical function. 

Considering Eq. 26 we have: 

𝐻(𝑣, 0) = 𝐿(𝑣) − 𝐿(𝑧0) = 0, 𝐻(𝑣, 1) = 𝐿(𝑣) + 𝑁(𝑣) − 𝑓(𝑟) = 0      (27) 
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In that 𝑝 ∈ [0,1] is an embedding parameter and 𝑧0 is the initial estimate that satisfies the B.C. By substituting Eq. 21 into Eq. 

26, it becomes: 

𝐻(𝑣, 𝑝) = [
𝑑2𝑣(𝜏)

𝑑𝜏2 + 4 𝜉
𝑑𝑣(𝜏)

𝑑𝜏
+ [𝛿 + 4 𝜉2]𝑣(𝜏) − 𝐿(𝑧0)] + 𝑝𝐿(𝑧0) + 2 𝑝𝜀 𝑐𝑜𝑠(2 𝜏) 𝑣(𝜏)] = 0,      (28) 

The procedure for the changes in 𝑝 from 0 to unity is 𝑣(𝜏, 𝑝), which changing from 𝑧0 to 𝑧𝑟. 𝑧 is considered as: 

𝑣(𝜏) = ∑ 𝑣𝑖(𝜏)𝑝𝑖∞
𝑖=0   (29) 

The most accurate estimate for the solution is: 

𝑧(𝜏) = lim
𝑝→1

∑ 𝑣𝑖(𝜏)𝑝𝑖∞
𝑖=0   (30) 

Inserting Eqs. 23 and 29 into Eq. 28 yields: 

𝐻(𝑣, 𝑝) = [∑ 𝑣̈𝑖(𝜏)𝑝𝑖∞
𝑖=0 + 4 𝜉 ∑ 𝑣̇𝑖(𝜏)𝑝𝑖∞

𝑖=0 + [∑ 𝐺𝑖𝑝
𝑖∞

𝑖=0 + 4 𝜉2] ∑ 𝑣𝑖(𝜏)𝑝𝑖∞
𝑖=0 − 𝐿(𝑧0)] + 𝑝𝐿(𝑧0) +

[2 𝜀 𝑐𝑜𝑠(2 𝜏)] ∑ 𝑣𝑖(𝜏)𝑝𝑖∞
𝑖=0 ] = 0,  

(31) 

Assuming 𝐿(𝑧0) = 0 and simplification and rearranging based on powers of 𝑝-terms and setting the coefficients to each power 

of  𝑝 equal to 0 would result in an infinite collection of differential equations as: 

𝑝0: 𝑣̈0(𝜏) + 4 𝜉𝑣̇0(𝜏) + (4 𝜉2 + 4)𝑣0(𝜏) = 0, 𝑣0(0) = 1, 𝑣̇0(0) = 0  (32-1) 

𝑝1: 𝑣̈1(𝜏) + 4𝜉𝑣̇1(𝜏) + (4𝜉2 + 4)𝑣1(𝜏) = (2𝜀 − 𝐺1 − 4𝜀 𝑐𝑜𝑠2( 𝜏))𝑣0(𝜏), 𝑣1(0) = 0,  𝑣̇1(0) = 0  (32-2) 

𝑝2: 𝑣̈2(𝜏) + 4𝜉𝑣̇2(𝜏) + (4𝜉2 + 4) 𝑣2(𝜏) = (2𝜀 − 𝐺1 − 4𝜀 𝑐𝑜𝑠2( 𝜏))𝑧1(𝜏) − 𝐺2𝑣0(𝜏), 𝑣2(0) = 0,
𝑣̇2(0) = 0    

(32-3) 

𝑝3: 𝑣̈3(𝜏) + 4 𝜉𝑣̇3(𝜏) + (4𝜉2 + 4)𝑣3(𝜏) = (2 𝜀 − 𝐺1 − 4 𝜀 𝑐𝑜𝑠2( 𝜏))𝑣2(𝜏) − 𝐺2𝑣1(𝜏) −
𝐺3𝑣0(𝜏), 𝑣3(0) = 0, 𝑣̇3(0) = 0  

(32-4) 

The infinite set outlined in Eq. 32 has been solved recursively. To derive solutions for this set of equations, certain conditions 

must be placed on 𝐺𝑖 . The first part of this set provides the zero-order estimate for the solution: 

𝑣0(𝜏) = 𝑒−2𝜉𝜏(𝐴0 𝑠𝑖𝑛( 2𝜏) + 𝐵0 𝑐𝑜𝑠( 2𝜏))  (33) 

The constants  𝐴0and  𝐵0in Eq. 33 are assessed by applying the initial conditions.  Solving Eq. 32-1 and taking into account suitable 

initial conditions, gives 𝑣0(𝜏) = 𝑒−2𝜉𝜏 𝑐𝑜𝑠( 2𝜏). Using Eq. 32-2, we have 

𝑣1(𝜏) = 𝜀𝑒−2𝜉𝜏 (−
1

3
+

1

6
𝑐𝑜𝑠( 2𝜏) +

1

6
𝑐𝑜𝑠2( 2𝜏) −

1

4
𝐺1𝜏 𝑠𝑖𝑛( 2𝜏))  (34) 

To meet the periodicity conditions for 𝑣0(𝜏),  𝐺1  is equal to zero. Henceforward, the answer to the second part of Eq. 32 is: 

𝑣1(𝜏) = 𝜀𝑒−2𝜉𝜏 (−
1

3
+

1

6
𝑐𝑜𝑠( 2𝜏) +

1

6
𝑐𝑜𝑠2( 2𝜏))  (35) 

Knowing that 𝐺1 = 0, and using Eq. 32-3, 𝑣2(𝜏) is obtained in the following form: 

𝑣2(𝜏) =
1

288
𝑒−2𝜉𝜏(3𝜀2 𝑐𝑜𝑠3( 2𝜏) + 8𝜀2 𝑐𝑜𝑠2( 2𝜏) + 5𝜀2 𝑐𝑜𝑠( 2𝜏) +30 (𝜀2 −

12

5
𝐺2) 𝜏 𝑠𝑖𝑛( 2𝜏) − 16 𝜀2)  (36) 

𝑣2(𝜏) will be periodic when the term's coefficient is set equal to zero, so 𝐺2 = 5 12⁄ 𝜀2. Thus, similar procedures can be used; 

other equations of Eq. 32 can be solved recursively. 

𝑣3(𝜏) =
1

2880
𝑒−2𝜉𝜏(𝜀3 𝑐𝑜𝑠4( 2𝜏) + 5 𝜀3 𝑐𝑜𝑠3( 2𝜏) + 29 𝜀3 𝑐𝑜𝑠2( 2𝜏)−77 𝜀3 𝑐𝑜𝑠( 2𝜏) − 720 𝐺3 𝜏 𝑠𝑖𝑛( 2𝜏) + 42 𝜀3),

𝐺3 = 0  
(37) 

𝑣4(𝜏) =
1

1658880
𝑒−2𝜉𝜏(12 𝜀4 𝑐𝑜𝑠5( 2𝜏) + 96 𝜀4 𝑐𝑜𝑠4( 2𝜏) + 1299 𝜀4 𝑐𝑜𝑠3( 2𝜏) − 5408 𝜀4 𝑐𝑜𝑠2( 2𝜏) −

16415 𝜀4 𝑐𝑜𝑠( 2𝜏) − 22890 (
13824

763
𝐺4 + 𝜀4) 𝜏 𝑠𝑖𝑛( 4𝜏) + 20416 𝜀4),   𝐺4 = −

763

13824
𝜀4  

(38) 

𝑣5(𝜏) =
1

116121600
𝑒−2𝜉𝜏(12 𝜀5 𝑐𝑜𝑠6( 2𝜏) + 140𝜀5 𝑐𝑜𝑠5( 2𝜏) + 3335 𝜀5 𝑐𝑜𝑠4( 2𝜏) − 20685 𝜀5 𝑐𝑜𝑠3( 2𝜏) −

226585 𝜀5 𝑐𝑜𝑠2( 2𝜏) + 501113 𝜀5 𝑐𝑜𝑠( 2𝜏) − 29030400 𝐺5𝜏 𝑠𝑖𝑛( 2𝜏) − 257330 𝜀5), 𝐺5 = 0  
(39) 

Continuing with this process results in additional terms of 𝑣𝑖(𝜏), a few first terms will ensure suitable precision for the solution, 

and the other terms make a minor impact on the solution. By using a variable transformation 𝜏 = 𝜔𝑏𝑡 2⁄  and 𝑝 → 1, the solution 
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for Eq. 19 in relations of  𝜔𝑏 at the actual time  𝑡  is achieved: 

𝑧(𝑡) = 𝑒−
𝑐

2 𝑚
𝑡 [𝑐𝑜𝑠( 𝜔𝑏𝑡) +

1

6
𝜀(𝑐𝑜𝑠2( 𝜔𝑏𝑡) + 𝑐𝑜𝑠( 𝜔𝑏𝑡) − 2) +

1

288
𝜀2(3 𝑐𝑜𝑠3( 𝜔𝑏𝑡) + 8 𝑐𝑜𝑠2( 𝜔𝑏𝑡) + 5 𝑐𝑜𝑠( 𝜔𝑏𝑡) −

16) +
1

2880
𝜀3(𝑐𝑜𝑠4( 𝜔𝑏𝑡) + 5 𝑐𝑜𝑠3( 𝜔𝑏𝑡) + 29 𝑐𝑜𝑠2( 𝜔𝑏𝑡) − 77 𝑐𝑜𝑠( 𝜔𝑏𝑡) + 42) +

1

1658880
𝜀4 (12 𝑐𝑜𝑠5( 𝜔𝑏𝑡) +

96 𝑐𝑜𝑠4( 𝜔𝑏𝑡) + 1299 𝑐𝑜𝑠3( 𝜔𝑏𝑡) −5408 𝑐𝑜𝑠2( 𝜔𝑏𝑡) − 16415 𝑐𝑜𝑠( 𝜔𝑏𝑡) + 20416 +
1

116121600
𝜀5(12 𝑐𝑜𝑠7( 𝜔𝑏𝑡) +

140 𝑐𝑜𝑠5( 𝜔𝑏𝑡) + 3335 𝑐𝑜𝑠4( 𝜔𝑏𝑡)) −20685 𝑐𝑜𝑠3( 𝜔𝑏𝑡) − 226585 𝑐𝑜𝑠2( 𝜔𝑏𝑡) + 501113 𝑐𝑜𝑠( 𝜔𝑏𝑡) − 257330 +
1

58060800
𝜀6(72 𝑐𝑜𝑠7( 𝜔𝑏𝑡) + 1152 𝑐𝑜𝑠6( 𝜔𝑏𝑡) + 4224 𝑐𝑜𝑠5( 𝜔𝑏𝑡)) − 367968 𝑐𝑜𝑠4( 𝜔𝑏𝑡) − 8571195 𝑐𝑜𝑠3( 𝜔𝑏𝑡) +

30518176 𝑐𝑜𝑠2( 𝜔𝑏𝑡)+ 176434669 𝑐𝑜𝑠( 𝜔𝑏𝑡) − 198057152)+. . . . ]  

(40) 

, and 

𝛿 = 4 +
5

12
𝜀2 −

763

13824
𝜀4 +

1002401

79626240
𝜀6 −

1669068401

458647142400
𝜀8 +  …  .      (41) 

Eq. 41 has a clear physical interpretation. Eq. 22 shows 𝛿  , which is a function of the SDOF model parameters, breathing 

frequency, and the structural stiffness modifications caused by the crack. Also, Eq. (41) formulates 𝛿  in terms of ε for a periodic 

solution of D.E. (Eq. 21). 

 Thus, applying Eq. 25 alongside Eq. 41 establishes a relationship for the damping ratio of the fatigue-cracked beam based on 

its geometric dimensions, mechanical properties, and crack characteristics, as follows 

𝜉 =
1

3317760

1

1+𝜒
(√6((1 + 𝜒)(−917294284800 − 917294284800𝜒 − 191102976000 𝜀2 − 191102976000 𝜀2𝜒 +

25314508800 𝜀4 + 253145088000 𝜀4𝜒 − 5773829760 𝜀6 − 5773829760 𝜀6𝜒 + 1669068401 𝜀8 +

1669068401 𝜀8𝜒 + 229323571200 𝜒2 + 917294284800 √1 + 𝜒 + 458647142400 √1 + 𝜒𝜒))1 2⁄ )  

(42) 

where ε is a function of 𝜒 (See: Eq. 22). The Motion equation has an analytical and periodic solution only if  𝛿 and  ε parameters of 

Eq. 21)are situated on the transition curves. An unbounded solution exists for any plane and location in the unstable region 

(highlighted sections in Fig. 2) . Nonetheless, considering the cited crack’s physical evidence, beam 𝜀  is always positive, and the 

associated transition curve 𝛿 − 𝜀 emanates from the point  𝛿 = 4 on the  𝛿  axis. It is illustrated that when  𝜀  approaches zero, the 

precision of the asymptotic response will rise. Thus, utilizing Eq. 24, which illustrates the relationship between 𝜀 and  𝜒 , it is observed 

that when 𝜒 is less than 1.5, the value of  ε will always be below unity. The formula between 𝜒 and the mechanical properties of the 

considered flexural fatigue-cracked beam takes the dimensionless form: 

𝜒 =
𝛥𝐶

𝐶
=

3𝜋5(1−𝜈2)

4
(

𝐿0

𝐿
)

2

(
ℎ

𝐿
) 𝑔(𝛼)  (43) 

Utilizing this dimensionless equation, 𝜒 can plot against the crack depth ratio 𝛼 = 𝑎 ℎ⁄ , and the crack location ratio 𝛽 = 𝐿0 𝐿⁄  

to establish the valid domain of the solution. The region of 𝜒 > 1.5 is valid for the analytical solution. This method enables the 

derivation of the analytical solution for the free vibration response. Additionally, the beam's damping ratio can be computed based 

on the specified geometric dimensions, mechanical characteristics, and crack depth. 

4. Results and discussion 

Using the HPM outlined in section 3, this study investigates both the quantitative and qualitative parameters affecting the 

behavior of a fatigue-cracked beam. To compare the proposed method's results and the experimental findings reported in the 

reference [34], an aluminum pinned-supported with a length of 235 mm and a cross-sectional area of 7×23 mm2 serves as a case 

example in this study. The material density and Young’s modulus of elasticity of the beam are 2800 kg/m3 and 72 GPa. As mentioned 

in section 2.2, the stiffness of a beam with a fatigue crack varies continuously over time as the beam vibrates, i.e., during each half-

cycle of beam vibration, the stiffness of the beam transitions smoothly between the two extremes that represent a fully open crack 

and a fully closed crack case. Fig. 3 illustrates the change in stiffness overtime during a half-cycle vibration for a beam with a crack 

position ratio β = 0.2 and variable crack depth ratios of α. In this figure, the extreme values of the curve relate to entirely closed 

cases of the crack (i.e., the unaltered beam), and the lowest values relate to completely open cases of the crack. Additionally, this 

figure shows that a deeper crack leads to a broader range of stiffness variations, consequently decreasing the dominant frequency. 
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Fig. 3. The fatigue-Cracked beam’s stiffness changes over time(s) with the position ratio for β = 0.2 and various crack depth ratios. 

The recommended analytical method can assess a fatigue-cracked beam's free deformation and acceleration results for a specified 

crack depth and position. The computed free vibration responses of the fatigue-cracked beam for the crack parameters illustrated in 

Fig. 3 are presented in Figs. 4 and 5. In both scenarios, the initial deformation is z (0) = 1 cm. These figures indicate that greater 

crack depth results in a more significant decay of the fatigue-cracked beam's response. The emergence of the dominant frequency's 

super harmonics results from variations in the stiffness of the fatigue-cracked beam during vibration. 

 
 

β = 0.2 α=0.4 

Fig. 4. The deformation response of the beam with (a) a constant crack position ratio (β = 0.2) and varying crack depth ratios, and (b) 

a constant crack depth ratio (α = 0.4) and varying crack position ratios. 
 

  
(a) (b) 

Fig. 5. The beam deformation response of the crack position ratio β = 0.2 and dual crack depth ratios of (a) α=0.2, and (b) α=0.4. 

One major advantage of the given analytical method is its capability to estimate the system's damping due to the crack. Fig. 6 

illustrates how the damping factor varies with the crack position ratio at dissimilar crack depth ratios. The figure indicates that the 

system damping reaches its peak for a specific crack depth when the crack is situated at the beam's midpoint. Consequently, the 
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damping factor is responsive to the crack's depth and location. 

 
Fig. 6. Damping factor variation of the vibration flexural cracked beam concerning the crack position ratio for various crack depth 

ratios. 

To verify the analytical solution for the beam for the crack parameters α = 0.4 and β = 0.2, the motion equation is resolved 

numerically via the fourth-order Runge-Kutta technique, with the results presented in Table 1. The primary conditions match those 

used in the analytical case. The comparison of HPM and numerical results shows strong agreement between the analytical and 

numerical solutions. It's important to note that the beam's damping factor is not included in numerical methods; thus, an assumed 

value is necessary. In this context, some researchers have taken values of 0.01 and 0.15 for the damping factor in the vibration 

analysis of flexural fatigue-cracked beams. As previously mentioned, the system's damping relies on the crack parameters, and the 

damping factor for a fatigue-fractured beam changes based on crack depth and location. Consequently, the damping factor is derived 

from the suggested analytical method and applied in the numerical analysis to enhance the accuracy of the numerical method [21]. 

Table 1. Comparison of the free vibration response of the crack parameters β = 0.2 and α = 0.4 measured from HPM and numerical 

model . 

Time 
Displacement (cm) Velocity (cm/s) 

Numerical result (HPM) Numerical result (HPM) 

0 1 1 0 0 

0.001 0.796182 0.803836 2020.033 1907.988 

0.005 -0.20705 -0.19625 2773.582 2796.619 

0.01 -0.19011 -0.19387 -991.598 -965.217 

0.05 8.49E-04 8.58E-04 3.231528 3.10251 

0.1 4.32E-07 4.507453432 E-07 5.55E-03 5.446 E-03 

0.5 8.90E-12 7.656194548 E-031 -1.07E-07 -5.1E-27 

1 -9.84E-12 -9.7E-62 5.06E-08 -7.6E-57 

To ensure a legitimate analytical closed-form solution, ΔC/C must be less than 1.5. Consequently, the shaded area defines the 

allowable variation limits for the crack parameters (see Fig. 7). The crack terms of the referenced beams are situated within the 

hatched area. Thus, the analytical solutions acquired are considered valid. To evaluate the accuracy of the results produced by the 

proposed analytical solution, a comparison is made with the experimental results presented by Chondros et al. [34]. The crack is 

situated at the center of the bending beam (with assumption β = 0.5); the suggested analytical method applies to both the breathing 

and the open crack models.  

The solid curve in Fig. 8 illustrates how the fundamental frequency ratio changes for the transverse dynamic vibration of a 

pinned-supported beam with a breathing crack situated at the midpoint. This variation is plotted against the depth of the crack ratios. 

In Fig. 8, the experimental results reported by Chondros et al. [34]. The solid curve comparison with the experimental data shows 

that the proposed method's results agree with the experimental findings reported in the literature. Furthermore, this figure illustrates 

that the frequency decrease in the open crack mode for a specific crack location ratio is more significant than that in the breathing 

model. This finding has been established earlier [18]. 
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Fig. 7. The area of the flexural crack terms necessary for acquiring a legitimate analytical solution for the vibration analysis of an 

aluminum-pinned supported beam measuring 7 × 23 × 235 mm³. 
 

 
Fig. 8. The variation in the dominant frequency ratio of a cracked pinned-supported bending beam compared to the depth ratio for 

the crack in the position ratio β = 0.5. 

5. Conclusion 

This study introduces an analytical alternative novel technique for analyzing the vibrations of a flexural cracked beam. The 

cracked beam behaves as a nonlinear SDOF structure, with nonlinearity stemming from the crack's breathing behavior. The GE is 

addressed using the perturbation technique. The solution is valid across a broad spectrum of crack parameters, mechanical 

characteristics of the beam, and geometric dimensions. This approach estimates the cracked beam's damping ratio due to the crack's 

existence. 

The findings reveal that the crack's depth and location influence the damping factor. Moreover, the super harmonics of the 

dominant frequency in the response spectra of the cracked beam illustrate its nonlinear dynamic behavior, potentially serving as an 

indicator of cracks in structural health monitoring applications. 

A numerical method is employed alongside the proposed approach to confirm the analytical findings. The free vibration of the 

flexural cracked beam, calculated using the analytical approach at a specific crack depth and position, matches the numerical results. 

The outcomes confirm that the solution is consistent with the analytical numerical response. 

To confirm the results, a plot of the fundamental frequency ratio against the crack depth ratio for a given crack location ratio is 

generated according to the breathing flexural crack model, juxtaposed with the experimental findings from the literature. The results 

indicate compatibility with similar experimental data. 
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Structural damage can be detected non-destructively by comparing the dynamic 

characteristics of a structure before and after a major event. Optimization techniques are 

effective tools for damage identification using structural dynamic properties, as the 

problem is formulated and solved inversely. To achieve this, the damage levels in each 

element are treated as decision variables. The objective is to fine-tune these variables so 

that the model’s response closely aligns with the experimentally observed dynamic 

characteristics of the damaged structure. This study proposes a hybrid Particle Swarm 

optimization- Harris Hawks optimization algorithm for damage detection in truss 

structures based on dynamic structural responses. To evaluate the effectiveness of the 

proposed method, two case study of planar truss is considered as a numerical examples. 

The results highlight the importance of incorporating modal parameters to accurately 

identify the damage scenario. The results demonstrate that the hybrid algorithm 

significantly outperforms the individual algorithms in accurately detecting structural 

damage. 
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1. Introduction 

Structures may sustain damage during their service life due to various factors, including corrosion, deterioration, excessive 

loading, and construction errors [1]. Damages may obvious as changes in the structural stiffness or effective mass, potentially 

leading to disruptions in the structural performance. Proper inspection, monitoring, and maintenance of structures are essential to 

ensure economic efficiency and promote sustainability in engineering [2,3]. Damage detection is considered the initial stage of a 

broader process known as damage identification [4]. Non-destructive damage detection methods identify structural damage without 

causing damage to the structure, utilizing its dynamic characteristics. Compared to destructive techniques, these methods are safer, 

more cost-effective, and better suited for continuous structural monitoring [5]. Non-destructive methods are primarily implemented 

through analytical approaches. For years, researchers have been investigating non-destructive techniques for damage identification. 

In general, when a structural member is damaged, the resulting changes directly influence the stiffness matrix of the structure, 

leading to alterations in its vibrational behavior [6]. For this reason, one of the effective approaches in non-destructive structural 

damage identification is to examine changes in the dynamic properties of the structure by utilizing natural frequencies and mode 

shapes [7,8]. On the other hand, various structural responses can be used as damage indicators, but modal parameters have the 

advantage of being independent of external excitation [9].  

The first studies on damage identification based on monitoring changes in natural frequencies are conducted by Adams et al. 

[10,11]. They found that natural frequencies are highly dependent on the overall stiffness and mass distribution of the structure; 

therefore, even minor damages can cause measurable changes in these frequencies. Moreover, modal behavior provides more 

detailed information about the damage distribution, especially when frequency changes alone are insufficient to pinpoint the exact 
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location of the damage [12,13]. Extensive research has been conducted to detect structural damage using various indicators derived 

from dynamic characteristics [14–18]. Among these indicators are methods based on modal data correlation, parameter estimation 

techniques [19], frequency response functions [20], and geometric transfer matrices [21].  

Non-destructive damage identification methods in structures are typically formulated as inverse problems and addressed through 

two main approaches: closed-form (analytical) solutions and optimization techniques. The closed-form solutions, which rely on 

precise mathematical relationships, are suitable for simple structures and noise-free data [22]. However, for complex structures or 

data contaminated with noise, optimization methods are preferred due to their flexibility and ability to handle uncertainties [23,24]. 

The general approach of optimization methods involves minimizing the discrepancy between the actual structural response and the 

response predicted by the optimization model. Sahu and Maity [25] investigated the impact of damage on the static behavior of 

structures using a neuro-genetic algorithm. In various studies, different optimization algorithms have been employed together with 

modal analyses of structures for damage identification [26–28]. Kaveh and Zolghadr [9] investigated and evaluated the damage 

present in truss structures under both two-dimensional and three-dimensional conditions using a population-based algorithm. 

In this study, a hybrid metaheuristic algorithm is proposed for damage identification in truss structures using an inverse 

optimization approach. The objective function is designed to compare the dynamic characteristics of the intact (undamaged) 

structure with those of the structure under various damage scenarios. Initially, the dynamic characteristics of the intact structure are 

obtained through structural analysis. Then, by reducing the stiffness in certain truss members, possible damage scenarios are 

simulated. For each scenario, the dynamic response is computed, and the objective function quantifies the discrepancy between the 

dynamic characteristics such as natural frequencies and mode shapes of the intact and damaged structures. The metaheuristic 

optimization algorithm iteratively searches for the damage scenario that minimizes this discrepancy, effectively identifying the most 

probable location and extent of the damage. This method enables an efficient and automated damage identification process without 

the need for direct damage measurements, relying solely on changes in the dynamic behavior of the structure. The remainder of the 

paper is organized as follows: Section 2 presents the damage identification formulation. Section 3 describes the proposed 

metaheuristic algorithm. Section 4, presented the optimization formulation of this study. Section 5, described the methodology of 

damage detection with hybrid optimization algorithms. Section 6 presents a structural case study to evaluate the efficiency of the 

proposed method. Section 7 discusses the results of the case study, in Section 8 discusses the limitation of this study, and finally, 

Section 9 provides the conclusions of the research. 

2. Modal-based damage identification in truss structures 

In the term of structural health monitoring, damage identification is modeled as an optimization problem aimed at detecting 

changes in dynamics structural parameters such as natural frequencies, mode shape, particularly reductions in member stiffness. 

These changes lead to observable variations in dynamic properties such as natural frequencies and mode shapes. In this section, a 

concise formulation for structural damage identification based on changes in natural frequencies is presented. The analysis process 

begins with a review of the displacement-based finite element equations. 

2.1. Structural dynamic equation 

The dynamic equation of motion for an undamped multi-degree-of-freedom system is expressed in Eq. 1: 

[𝑀]{𝑥̈} + [𝐾]{𝑥} = 0  (1) 

where K is the stiffness matrix and M is the mass matrix, while x is the displacement vector corresponding to the dynamic problem. 

For clarity in expressing the finite element terms, a truss structure composed of n elements is considered as the system in this study. 

In finite element modeling of truss structures, each member is idealized as a two-node bar element that is subjected only to axial 

forces. This method follows a displacement-based approach, in which the overall structural response is assembled from the behavior 

of individual elements. Accordingly, the equations corresponding to the dynamic characteristics of the truss structure are presented 

in following. For a bar element with length L, cross-sectional area A, and Young’s modulus E, the stiffness matrix in the local 

coordinate system is defined by Eq. 2 [29]. 

[𝑘𝑒] =
𝐴𝐸

𝐿
[

1 −1
−1 1

]  (2) 

Assuming a uniform mass distribution along the member, the mass matrix in the local coordinate system is defined as shown in 

Eq. 3. 

[𝑚𝑒] =
𝜌𝐴𝐿

6
[
2 1
1 2

]  (3) 

For an element in a two-dimensional structure, the structural properties are transformed from the local coordinate system to the 

global coordinate system using the transformation matrix T, as defined in the Eq. 4.  

[𝑇] = [

𝐶 𝑆 0 0
−𝑆 𝐶 0 0
0 0 𝐶 𝑆
0 0 −𝑆 𝐶

]  (4) 
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where C and S represent cosα and sinα, respectively. The transformed stiffness and mass matrices in the global coordinate system 

are then obtained through Equations 5 and 6, respectively. 

[𝐾] = [𝑇]𝑇 . [𝑘𝑒]. [𝑇]  (5) 

[𝑀] = [𝑇]𝑇 . [𝑚𝑒]. [𝑇]  (6) 

2.2. Damage formulation 

The modal properties of the undamaged structure are obtained by solving the eigenvalue problem. The Eq. 7 is formulated based 

on the dynamic model of the structure in its free-vibration state, without incorporating any damage. 

[𝐾]{𝜑𝑖} − 𝜔𝑖
2[𝑀]{𝜑𝑖} = {0}  (7) 

where ωi denotes the ith natural frequency, and ϕi  represents the corresponding mode shape. These parameters characterize the 

undamaged modal properties of the structure. 

Within the concept of inverse problem-based damage identification, each structural member is typically assigned a damage index 

that reflects its health condition and quantifies the potential stiffness reduction due to damage. This index, typically denoted by αi, 

takes a value between zero and one, where zero indicates a completely healthy member and one corresponds to a fully damaged 

member. In this study, the stiffness matrix is modified to account for the effect of damaged members and is reformulated accordingly, 

as presented in Eq. 8 

[𝐾𝑑] = ∑ (1 − 𝛼𝑖). [𝐾𝑖]𝐸𝑙𝑒
𝑖=1   (8) 

To incorporate structural damage, the global stiffness matrix K is replaced by a modified stiffness matrix  Kd (see Eq. 9), which 

reflects the stiffness reduction caused by damage. It is assumed that the mass matrix M remains unaffected by the damage [30]. 

[𝐾𝑑]{𝜑𝑗
𝑑} − 𝜔𝑗

𝑑2
[𝑀]{𝜑𝑗

𝑑} = {0}  (9) 

where ωj and ϕj correspond to the jth natural frequency and its associated mode shape of the damaged structure. This eigenvalue 

equation determines the natural frequencies and mode shapes of the damaged structure, which are utilized in the damage 

identification process. The process of frequency and mode shape variation due to damage is illustrated schematically in the Fig. 1. 

 
Fig. 1. Schematic representation of frequency and mode shape variations due to structural damage. 

3. Optimization approach 

In structural damage identification through inverse problem solving, the objective function is typically formulated based on the 

difference between the observed structural responses and those predicted by the model [31]. This approach typically presents a 

complex landscape with numerous local minima and multiple global optimal solutions [32]. Therefore, an effective solution to this 

inverse problem necessitates the use of a robust optimization algorithm capable of thoroughly and efficiently exploring the search 

space to accurately identify the most probable damage configuration. In recent years, metaheuristic algorithms have been widely 

employed for structural damage identification [33–35]. Inspired by natural phenomena such as evolution, swarm behavior, or 

physical laws, these algorithms exhibit strong global search capabilities and are less susceptible to the challenges posed by the non-

convex nature of the objective function. Their ability to effectively handle discrete or continuous variables, noisy data, and complex 

search spaces makes metaheuristic algorithms particularly well-suited for solving inverse problems related to structural damage 

identification [36]. In this study, a hybrid metaheuristic algorithm combining particle swarm optimization and the harris hawks 
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optimization algorithm is proposed. First, the structures of each base algorithms are reviewed, and subsequently, the hybrid 

algorithm is presented. 

3.1. Particle swarm optimization (PSO) algorithm 

The PSO is a population-based metaheuristic algorithm inspired by the social behavior of animals searching for food [37]. In 

this algorithm, each particle represents a potential solution and navigates through the search space by updating its position based on 

its own experience and the experience of neighboring particles. Each particle possesses both a position and a velocity, and its 

movement is influenced by personal experience (its own best previous position) and social experience (the best position found by 

the entire swarm). In each iteration, the velocity of a particle is updated based on its personal best position and the global best 

position found by the swarm. Subsequently, the particle's new position is determined [38,39]. Through repeated iterations, the 

particles gradually converge toward optimal regions of the search space. The general steps of the PSO algorithm can be summarized 

as follows: 

1. Initially, the position and velocity of each particle are randomly initialized within the defined bounds of search space, as 

expressed in Eq. 10. 

𝑥𝑖
(0)

= 𝑥𝑚𝑖𝑛 + 𝑟1. (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)  

𝑣𝑖
(0)

= 𝑣𝑚𝑖𝑛 + 𝑟2. (𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛)  
(10) 

The variables r1 and r2 are uniformly distributed random numbers in the range [0, 1].  The subscripts min and max denote 

the lower and upper bounds of the search space for the particle's position x and velocity v, respectively. 

2. The objective function is evaluated for each particle, and both the personal best position and the global best position are 

updated accordingly . 

3. The velocity of each particle is updated based on three components: momentum, the tendency toward its own best-known 

position (Pi), and the tendency toward the best-known position of the entire swarm (PG), according to the Eq. 11. Using the 

updated velocity, the position of each particle is updated according to the following Eq. 12. 

𝑣𝑖
(𝑡+1)

= 𝜔. 𝑣𝑖
(𝑡)

+ 𝑐1. 𝑟1. (𝑃𝑖 − 𝑥𝑖
(𝑡)

) + 𝑐2.. 𝑟2. (𝑃𝐺 − 𝑥𝑖
(𝑡)

)  (11) 

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+ 𝑣𝑖
(𝑡+1)

  (12) 

4. In each iteration, if a particle's current objective function value is better than its personal best, its best-known position is 

updated accordingly. Similarly, if the PG improves, it is also updated. This process continues until a stopping criterion is 

met either reaching the maximum number of iterations or observing no significant improvement in the global best over 

several consecutive iterations [40]. Further details of the PSO algorithm are presented in [41,42]. 

3.2. Harris hawks optimization (HHO) algorithm 

The HHO algorithm is a bio-inspired metaheuristic approach that draws inspiration from the collaborative hunting tactics of 

harris' hawks, introduced by Heidari et al. in 2019 [43]. These birds employ adaptive, group-based strategies that respond 

dynamically to prey movements and environmental factors. The HHO replicates these behaviors through an iterative process that 

effectively balances global exploration with local exploitation using probabilistic and adaptive techniques. By modeling hunting 

stages such as sudden ambushes and varied besieging maneuvers, the algorithm navigates complex search spaces to identify optimal 

solutions. Owing to its flexibility, robustness, and ease of implementation, the HHO has been successfully applied to a wide range 

of optimization problems in engineering and science. The main step of the HHO algorithm described in following. 

1. Generate an initial population of n hawks, each representing a solution vector in a search space. Each variable is randomly 

initialized within its bounds, as expressed in Eq. 13: 

𝑥𝑖
(𝑗)

= 𝑥𝑚𝑖𝑛
(𝑗)

+ 𝑟. (𝑥𝑚𝑎𝑥
(𝑗)

− 𝑥𝑚𝑖𝑛
(𝑗)

)  (13) 

The variables r is random number uniformly distributed in the range [0, 1].  The subscripts min and max denote the lower 

and upper bounds of the search space for the hawk's position x. 

2. After initializing the population, the algorithm evaluates each hawk’s fitness and selects the best one (with the lowest 

objective value) as the rabbit (i.e., the current best solution). This best solution guides the movement of the rest of the hawks 

and is updated whenever a better solution is found during the iterations. 

3. The HHO algorithm adjusts its search based on the prey's escape energy, defined by Eq. 14. 

𝐸 = 2𝐸0(1 −
𝑡

𝑇
)  (14) 
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where E0 in range -1 to 1, is the initial energy, t is the current iteration, and T is the maximum iterations. If |𝐸| ≥ 1, the 

HHO algorithm explores broadly by using Eq. 15. 

𝑥𝑡+1 = 
𝑥𝑟𝑎𝑛𝑑 − 𝛼1|𝑥𝑟𝑎𝑛𝑑 − 2𝛼2𝑥𝑡| 
𝑥𝑟𝑎𝑏𝑏𝑖𝑡 − 𝑥̄ − 𝛼3(𝑙𝐵 + 𝛼4(𝑢𝐵 − 𝑙𝐵)) 

𝑞 ≥ 0.5 
𝑞 < 0.5 

(15) 

where xrand is a randomly selected hawk, 𝑥̅ is the average position of hawks, and αi, q are random numbers. In  |𝐸| < 1, the 

hawks switch to exploitation with different strategies depending on 𝐸 a random number α. In this phase, for soft besiege 

(|𝐸| ≥ 0.5 and α ≥ 0.5) and hard besiege (|𝐸| < 0.5 and α ≥ 0.5), using Eqs. 16 and 17, respectively. 

𝑥𝑡+1 = 𝛥𝑥 − 𝐸. |𝐽. 𝑥𝑟𝑎𝑏𝑏𝑖𝑡 − 𝑥𝑡|, 𝛥𝑥 = 𝑥𝑟𝑎𝑏𝑏𝑖𝑡 − 𝑥𝑡  (16) 

𝑥𝑡+1 = 𝑥𝑟𝑎𝑏𝑏𝑖𝑡 − 𝐸. |𝛥𝑥|  (17) 

4. After reaching the maximum iteration T, return the best solution Xrabbit as the optimal result. More detail of the HHO 

algorithms is expressed in [44]. 

3.3. Hybrid metaheuristic optimization algorithm PSO-HHO 

The hybrid PSO-HHO algorithm integrates the strengths of both methods to address complex optimization problems effectively. 

The PSO’s rapid convergence and robust global search complement HHO’s adaptive strategies, which balance exploration and 

exploitation [45]. This hybridization mitigates PSO’s tendency to get trapped in local optima by leveraging HHO’s diverse hunting 

mechanisms [46], such as surprise pounce and Levy flight-based jumps, while enhancing HHO’s slower convergence in high-

dimensional problems through PSO’s collective dynamics. By integrating these features, the hybrid algorithm achieves improved 

efficiency, stability, and solution quality in multimodal optimization tasks. 

The hybrid PSO-HHO algorithm integrates PSO and HHO by dividing the population into two interacting subgroups to optimize 

complex problems. The PSO subgroup rapidly explores the search space using collective particle dynamics, updating positions 

based on individual and global best solutions. Meanwhile, the HHO subgroup refines solutions through adaptive hunting strategies, 

such as surprise pounce and dynamic besieging, focusing on precise exploitation. Interaction occurs iteratively: PSO shares its top-

performing solutions with HHO to enhance local search precision, while HHO’s best solutions guide PSO’s global exploration by 

updating its reference points [47]. A probabilistic crossover mechanism blends solutions from both subgroups to maintain diversity 

and prevent premature convergence. This cooperative framework leverages PSO’s fast global search to accelerate HHO’s slower 

convergence in high-dimensional spaces. In turn, HHO’s adaptive strategies help PSO escape local optima, resulting in improved 

solution accuracy, robustness, and efficiency for multimodal optimization tasks [48]. The Fig. 2 provides an overview of the hybrid 

algorithm, illustrating the interactions between PSO and HHO algorithm. 

4. Optimization formulation 

This section addresses the key aspects of applying the proposed optimization algorithm to structural damage identification. The 

formulation includes the definition of decision variables, the specification of problem constraints, and the construction of the 

objective function  that are fundamental components of any optimization process. The decision variables in this study are defined as 

stiffness reduction factors for each structural element, resulting in a total variable count equal to the number of elements in the 

model. The optimization problem is formulated as an unconstrained problem, with no additional constraints applied to the decision 

variables or the solution space. The primary objective is to minimize the discrepancy between the dynamic response obtained from 

the computational model and the response measured from the actual (possibly damaged) structure. This discrepancy is quantitatively 

represented through an objective function. To this end, the objective function is defined as f(α), which evaluates the difference 

between the computed and measured modal parameters. This function typically consists of two main components: 

1. Frequency difference term: this component evaluates the relative difference between the natural frequencies computed from 

the numerical model and those measured from the damaged structure, as expressed by the Eq. 18: 

𝑓1(𝛼) = ∑ (
𝜔𝑖

𝑑−𝜔𝑖

𝜔𝑖
)

𝑛𝑓

𝑖=1
  (18) 

2. Mode shape difference term: this component quantifies the discrepancy between the measured and computed mode shapes 

as expressed in Eq. 19. Finally, the objective function is computed as a weighted combination of the previously defined 

components, as expressed in the Eq. 20. 

𝑓2(𝛼) = ∑ ∑ (
𝜑(𝑖,𝑗)

𝑑 −𝜑(𝑖,𝑗)

𝜑(𝑖.𝑗)
)𝑛

𝑗

𝑛𝑓

𝑖=1
  (19) 

𝑓(𝛼) = 𝑓1(𝛼) + 𝑓2(𝛼)  (20) 

3. wehrer nf and n are representing the number of modes and the number of degrees of freedom, respectively. The objective 

function is formulated to assess the degree of agreement between the response of the damaged structure and that predicted 
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by the assumed damage scenario. The aim of the optimization process is to identify the damage scenario that results in the 

smallest discrepancy from the actual behavior of the damaged structure. A lower objective function value reflects a closer 

match between the simulated scenario and the true structural response. This process involves repetitive iterations to achieve 

minimization. The next section introduces the methodology of damage detection based proposed hybrid metaheuristic 

algorithm used in this study. 

 
Fig. 2. Flowchart of the hybrid PSO-HHO algorithm. 

5. Proposed framework for detecting structural damage 

In this research, structural damage is identified and evaluated by leveraging principles related to the dynamic response of the 

system. Techniques based on vibration analysis rely on the premise that a structure’s dynamic characteristics are inherently linked 

to its physical properties. Alterations in key structural matrices lead to observable variations in natural frequencies and mode shapes. 

This relationship forms the basis for damage detection, which can be approached by defining an optimization problem. As discussed 

in the preceding sections, the aim is to reduce the difference between the dynamic behavior represented by the damaged model and 

that observed in the experimental data, which forms the basis for defining the objective of the analysis.  

The initial phase of the proposed approach involves modeling of a finite element model that reflects the intact state of the 

structure. The damaged structural model is simulated by reducing the stiffness in the basic structural members through the stiffness 

matrix. In this framework, for second phase, the optimization variables are defined as stiffness reduction coefficients assigned to 

individual structural elements, with the total number of variables corresponding to the number of elements within the model. The 

parameters selected for formulating the objective function should exhibit high sensitivity to structural damage. Accordingly, the 

objective function is formulated based on a combination of the structure's modal properties, namely natural frequencies and mode 

shapes. In the third phase, the dynamic parameters corresponding to the damaged condition must be obtained experimentally. Each 
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damage scenario is characterized by a set of affected elements and their associated levels of damage. Choosing and setting up the 

optimization algorithm is key for effective damage detection. In this study, a hybrid PSO-HHO algorithm is employed to leverage 

the complementary strengths of both algorithms. The initial population is generated using heuristic strategies to effectively explore 

the search space, focusing on potential damage scenarios with varying severity. The hybrid algorithm iteratively updates candidate 

solutions, ultimately selecting the best-performing solution as the damage identification result. The identified damage scenario 

includes all elements exhibiting damage levels exceeding a predefined threshold, while elements with lower damage values are 

treated as undamaged. The hybrid PSO-HHO algorithm is executed multiple times, and the solution corresponding to the lowest 

objective function value is selected as the most representative damage scenario. The step-by-step process of the proposed damage 

detection methodology presented in this study is illustrated in Fig. 3. 

 
Fig. 3. Flowchart of the proposed damage detection method using a hybrid PSO-HHO algorithm. 

6. Proposed examples 

This section provides numerical simulations to evaluate the effectiveness of the proposed hybrid PSO-HHO algorithm in 

identifying structural damage within 2D truss systems. Since the damage identification algorithm is implemented based on the 

behavior of truss structures, two benchmark truss case studies are considered in this section. The first case involves a 15-element 

planar truss, as illustrated in Fig. 4, based on the model presented by Laier and Villalba [49]. In terms of degrees of freedom, all 

nodes except Node 1 and Node 5 have two translational degrees of freedom in the 2D plane. Node 1 is constrained in one direction 

and therefore retains only a single degree of freedom. In total, the truss system comprises 13 degrees of freedom. Both vertical and 

horizontal elements have a length of 1 meter. 

 
Fig. 4. Schematic of the first case study. 

The second case study is an 11-member planar truss structure introduced by Russell Hibbeler, as shown in Fig. 5, with specific 

constraint [50]. 
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Fig. 5. Schematic of the second case study [50]. 

In two case study, the structural members are defined with a Young’s modulus of E=200 GPa, material density of ρ=7800 kg/m³, 

and a uniform cross-sectional area of A=0.001 m². For this case study, various damage cases are considered, as summarized in Table 

1. 

Table 1. Various damage cases considered for the truss. 

Case study Damage scenario Damaged structural element damage intensity 

First 
Scenario 1 13 0.33 

Scenario 2 6, 11 0.2, 0.15 

Second 

Scenario 1 1 0.55 

Scenario 2 8 0.45 

Scenario 3 6, 11 0.25,0.15 

7. Result 

This section presents the observations and results related to truss damage identification under various damage scenarios in each 

truss case study. Generally, the truss structure in each case study is analyzed for 500 iterations with a population size of 300 for both 

single-element damage and multiple-element damage. The hybrid PSO–HHO algorithm combines the strengths of PSO and HHO 

to achieve a well-balanced trade-off between exploration and exploitation in complex search spaces. In the PSO component, key 

parameters such as inertia weight, cognitive coefficient, social coefficient, and velocity limits govern the dynamic behavior of 

particles. The inertia weight in this study starts at 0.9 and gradually decreases over the course of iterations. The cognitive and social 

learning coefficients typically range from 1.0 to 2.5, with standard values often set around 2.0. However, in this study, both the 

cognitive and social coefficients were set to 1.12, based on trials within the conventional range. Higher values led to decreased 

performance or failure to converge.  On the other hand, the HHO component incorporates adaptive mechanisms for diversification 

through two key parameters: escaping energy and jump strength. The gradual decay of escaping energy across iterations facilitates 

the transition from global exploration in the early stages to local exploitation in the later stages. This adaptive behavior helps prevent 

premature convergence and encourages a more comprehensive exploration of the solution space. The escaping energy decreases 

linearly to enhance diversity and avoid entrapment in local optima. The jump strength, which determines the magnitude of random 

movement, is governed by randomly generated values. A summary of each parameter and its corresponding value is provided in 

Table 2. The following section presents the results related to the two case studies. In the first case study, in addition to the initial 

damage detection results, detailed statistical analyses and the individual performance of each algorithm are provided. Finally, in the 

second case study, the results of damage identification are presented and discussed. 

Table 2. Parameters of the Hybrid PSO-HHO Algorithm. 

Parameter Description Value or Range 

w 
Inertia weight controlling the influence of the previous velocity on 

the current one (PSO) 
0.9 

c1 
Cognitive acceleration coefficient; determines the impact of the 

particle's own best experience on its velocity (PSO) 
1.12 

c2 
Social acceleration coefficient; determines the influence of the 

global best position (rabbit) on the particle's movement (PSO) 
1.12 

Maximum velocity 
Maximum velocity allowed for particles; used to limit how far a 

particle can move in a single iteration (PSO) 
0.2*(upper bound-lower bound) 

Minimum velocity 
Minimum velocity allowed for particles; ensures that the movement 

doesn’t become too small to be effective (PSO) 
-upper bound 
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Escaping energy 
Dynamic parameter in HHO controlling the transition between 

exploration and exploitation; decreases with each iteration (HHO) 
2*(1-

𝑖𝑡

max _𝑖𝑡
) * unifran (-1,1) 

Jump strength 

Controls the intensity of the Lévy flight-based jumps in HHO; adds 

randomness to enhance search diversification (HHO) 

 

2*(1-rand ()) 

it: current iteration, max_it: maximum iteration 

unifrand (-1,1): a random number from a uniform distribution in the range between -1 and 1. 

7.1. First case study 

The results of damage detection using the proposed hybrid PSO-HHO algorithm are presented in the next. Fig. 6  shows the 

convergence behavior of the hybrid algorithm across different runs for scenario 1. It is evident that from iteration 100 onwards, the 

algorithm achieves faster and more accurate convergence. The Table 3 summarizes three key performance indicators  mean, initial 

rate of decrease, and stability  for each of the four runs. The initial rate of decrease quantifies the early convergence behavior, 

measured by the drop in values between the first and second iterations. Stability is assessed by the standard deviation over the final 

20% of the iterations, indicating the solution's consistency in the latter stages of the run; lower values correspond to higher stability. 

 
Fig. 6. The cost function of each hybrid PSO-HHO algorithm run for scenario 1. 

 

Table 3. Comparison of performance metrics across four independent runs of the hybrid algorithm for scenario 1. 

Run 1 2 3 4 

Mean 0.282 0.089 0.083 0.14 

Initial rate of decrease 4.25 3.36 2.91 3.78 

stability 0.00 0.004 0.0015 0.00 

Fig. 7 presents the predicted damage values for scenario 1 in each run of the hybrid algorithm, compared to the actual damage 

values. 

For comparison and to assess the efficiency of the hybrid algorithm, the performance of the individual HHO and PSO algorithms 

is also described under identical population size and iteration settings.  For each algorithm, four independent runs are performed, 

and the comparison is based on the average results obtained from these runs. Figs. 8 and 9 illustrate the comparison between the 

hybrid algorithm and the HHO and PSO algorithm, respectively. As shown, the hybrid algorithm significantly outperforms the HHO 

algorithm. While the performance of the HHO algorithm improves with increasing population size (from 600 to 1000) at a constant 

number of iterations, a substantial performance gap between the two algorithms remains. However, the population size appears to 

have had a negligible impact on the performance of the PSO algorithm in this case study, as similar trends were observed across 

different population settings. 

Fig. 10 presents the distribution of the objective function values for the hybrid algorithm alongside the individual algorithms. 

Compared to Fig. 10a, Fig. 10b demonstrates a more consistent interquartile distribution across the algorithms, indicating a more 

stable performance of the HHO algorithm relative to PSO. The presence of numerous outliers in the PSO results also suggests a  

need for further tuning of the standalone PSO algorithm. 
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Fig. 7. The damage detection of each hybrid PSO-HHO algorithm run for scenario 1. 

 

 
Fig. 8. The performance comparison of hybrid PSO-HHO and HHO for scenario 1. 

In addition, statistical indicators provide valuable insight into the performance of each algorithm. Table 4 summarizes the 

statistical metrics computed for the objective function values obtained from the algorithms. It is worth noting that, for the hybrid 

algorithm, one of the four conducted analyses has been selected for representation.  The PSO-600 algorithm shows the highest mean 

cost function, while PSO-HHO has the lowest, indicating much better optimization performance. PSO-HHO also exhibits the 

smallest standard deviation, indicating high consistency across runs. Among the standalone methods, PSO-1000 and HHO-1000 

outperformed both their base versions and those with a population size of 600. Overall, the hybrid PSO-HHO approach clearly 

outperforms both individual PSO and HHO variants in both accuracy and stability. 
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Fig. 9. The performance comparison of hybrid PSO-HHO and PSO for scenario 1. 

 

 
Fig. 10. Evaluation of cost function distributions for PSO, HHO, and hybrid algorithms in scenario 1. a) PSO comparison, b) HHO 

comparison. 

 

Table 4. Statistical analysis of scenario 1 results for the hybrid algorithm and the individual PSO and HHO algorithms. 

item Mean STD Median Min Max 

PSO 5.09 0.66 5.04 3.90 11.98 

PSO-600 5.24 0.51 5.31 4.42 10.79 

PSO-1000 2.31 0.70 2.30 1.52 6.68 

HHO 3.20 0.78 2.95 2.65 13.27 

HHO-600 3.82 0.96 3.46 3.27 12.72 

HHO-1000 1.91 0.36 1.83 1.51 5.23 

PSO-HHO 0.14 0.22 0.11 0.09 4.92 

Fig. 11 shows the convergence behavior of the hybrid algorithm across different runs for scenario 2. Run 1 demonstrating the 

fastest initial descent and lowest final values, indicating superior performance. The Table 5 summarizes the key performance metrics 

for each of the four runs in scenario 2. The Run 2 demonstrates the greatest stability with a standard deviation of 0.002 in the last 

20% of the data, whereas Run 1 shows the highest variability with a stability of 0.0135 in the same part. 



Alavi et al. Civil Engineering and Applied Solutions 2025; 1(2): 55-73 
 

66 
 

 
Fig. 11. The cost function of each hybrid PSO-HHO algorithm run for scenario 2. 

 

Table 5. Comparison of performance metrics across four independent runs of the hybrid algorithm for scenario 2. 

Run 1 2 3 4 

Mean 0.58 1.1 0.14 0.25 

Initial rate of decrease 2.37 1.063 1.47 3.17 

stability 0.013 0.002 0.006 0.005 

Fig. 12 presents the identified damage values for scenario 2 in each run of the hybrid algorithm, compared to the actual damage 

values. While the algorithm qualitatively demonstrates good performance in damage identification, quantitatively, the estimations 

occasionally overestimate or underestimate the actual damage values. 

 
Fig. 12. The damage detection of each hybrid PSO-HHO algorithm run for scenario 2. 

Figs.13 and 14 illustrate the comparison between the hybrid algorithm and the HHO and PSO algorithm, respectively.  As 
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observed in scenario 1, the HHO algorithm once again demonstrates inferior performance when compared to the hybrid PSO-HHO 

algorithm under the same population size. Although HHO improves with larger populations, the hybrid algorithm consistently 

outperforms it across all settings. The cost function of the hybrid algorithm outperforms the HHO algorithm by approximately 30% 

to 65%, demonstrating a significantly improved performance. In contrast to scenario 1, increasing the population size has had a 

moderate impact on the performance of the PSO algorithm; nevertheless, a similar overall trend remains evident across different 

population sizes. 

 
Fig. 13. The performance comparison of hybrid PSO-HHO and HHO for scenario 2. 

 
Fig. 14. The performance comparison of hybrid PSO-HHO and PSO for scenario 2. 

The distribution and spread of the estimated objective function in this scenario for each algorithm are illustrated in the Fig. 15. 

Table 6 presents the statistical parameters related to the objective function values obtained from each algorithm in scenario 2. A 

review and comparison of these parameters clearly indicate that the hybrid algorithm demonstrates relatively superior performance 

compared to the individual application of each algorithm in the given example. 

7.2. Second case study 

In this case study, three different damage scenarios are applied to the truss structure illustrated in Fig. 5. The following section 

presents the damage detection results obtained by the hybrid algorithm across four independent runs. It is worth noting that, due to 

the influence of various parameters affecting the performance of the hybrid algorithm, a larger number of analyses is required to 

reduce uncertainty and achieve stable and reliable results. 
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Fig. 15. Evaluation of cost function distributions for PSO, HHO, and hybrid algorithms in scenario 2. a) PSO comparison, b) HHO 

comparison. 

 

Table 6. Statistical analysis of scenario 2 results for the hybrid algorithm and the individual PSO and HHO algorithms. 

item Mean STD Median Min Max 

PSO 10.04 0.74 9.93 9.91 22.96 

PSO-600 9.06 0.53 8.99 8.97 19.33 

PSO-1000 7.86 0.65 7.66 7.63 18.56 

HHO 3.2 0.78 2.95 2.65 13.26 

HHO-600 3.82 0.96 3.46 3.27 12.71 

HHO-1000 1.90 0.36 1.83 1.50 5.22 

PSO-HHO 0.52 0.54 0.28 0.20 7.72 

It is worth noting that, due to the influence of various parameters affecting the performance of the hybrid algorithm, a larger 

number of analyses is required to reduce uncertainty and achieve stable and reliable results. As illustrated in Fig. 16 the hybrid 

algorithm has successfully identified the damage located in a single member of the truss structure. 

However, in the second scenario  (see Fig. 17), although there is also damage in one member, due to its location near the center 

of the structure, the hybrid algorithm exhibited less stability in damage identification compared to the first scenario. While it 

successfully detected the damage in the affected member, it also incorrectly reported damage in other members. 

Finally, in the third scenario, where two members are damaged, the hybrid algorithm performed qualitatively well by correctly 

identifying the damaged locations  (see Fig. 18). However, from a quantitative perspective, it sometimes underestimates or 

overestimates the damage severity, which represents one of the algorithm’s limitations at this stage. Additionally, the hybrid 

algorithm estimated minor damage in some other members, which, although small in magnitude, negatively affects the overall 

stability. The following section discusses some of the reasons behind these limitations. 

8. Limitations of study 

Although the proposed PSO-HHO algorithm demonstrates high accuracy in identifying damage scenarios under various 

conditions, it is important to acknowledge its potential limitations. One such limitation arises in cases involving multiple-damage 

locations that are close to each other or occur in structurally symmetric positions. In these situations, the algorithm may misinterpret 

the dynamic response, leading to overestimation or underestimation of the damage severity or even misidentification of the damage 

location. Furthermore, in cases where the modal information is incomplete, highly sensitive to noise, or affected by closely spaced 

modes, the performance of the hybrid optimization approach may degrade. This is particularly true when measurement errors or 

modeling inaccuracies are present, which can skew the objective function landscape and cause the algorithm to converge to 

suboptimal solutions. In addition, it has been observed that in complex scenarios especially those involving multiple damage 

scenarios the algorithm may require a larger number of iterations or independent runs to achieve consistent and accurate results. 

This is due to the increased complexity and multimodality of the search space in such cases, which can trap the algorithm in local 

optima if the search process is prematurely terminated. Therefore, increasing the population size, adjusting the convergence criteria, 

or applying ensemble or restart strategies may help to enhance performance in these challenging settings. 
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Fig. 16. The damage detection of each hybrid PSO-HHO algorithm run for scenario 1. 

 

 
Fig. 17. The damage detection of each hybrid PSO-HHO algorithm run for scenario 2. 

These challenges highlight the need for further studies to improve the robustness of the algorithm in complex scenarios. Possible 

future directions include incorporating noise-handling mechanisms, utilizing multi-objective optimization to simultaneously 

consider different damage indicators, and integrating prior knowledge or physical constraints into the search process to guide the 

algorithm away from false-positive or false-negative detections. 
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Fig. 18. The damage detection of each hybrid PSO-HHO algorithm run for scenario 3. 

9. Conclusion 

In this study, structural damage identification is performed by optimizing the objective function based on the modal parameters 

of the structure. To achieve this, a hybrid PSO-HHO algorithm is proposed and applied to detect damage under various scenarios. 

The results demonstrated the effectiveness of the hybrid approach in accurately identifying damage, outperforming individual 

algorithms and highlighting the value of integrating modal information for structural health monitoring. Based on the relevant 

findings of this research, the key observations can be categorized as follows: 

1. The proposed hybrid PSO-HHO algorithm consistently outperforms the HHO and PSO algorithms in both damage scenarios. 

It achieves faster convergence, lower average cost function values, and greater stability in the final stages of optimization. 

This highlights the superior capability of the hybrid method, which identifies structural damage approximately 30% to 65% 

more accurately than the HHO algorithm. 

2. The hybrid algorithm shows reliable performance in both single element and multiple element damage scenarios. Although 

deviations occur in the quantitative estimations, the method qualitatively identifies damage locations well. The algorithm 

demonstrates that in scenarios involving multiple simultaneous damages, careful tuning of its performance parameters is 

essential to ensure accurate results. 
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A  R  T  I  C  L  E I  N  F  O 

This study conducts a multi-parameter assessment of groundwater quality in 

Chaharmahal and Bakhtiari province, Iran, to identify critical zones and support 

sustainable water resource management. Groundwater, vital for potable, irrigation, and 

industrial needs, was evaluated using the groundwater quality index (GWQI), Principal 

component analysis (PCA), and geographic information systems (GIS). Data from 2015–

2016, collected from multiple sampling points, included parameters like pH, EC, TDS, TH, 

Na⁺, Ca²⁺, Mg²⁺, Cl⁻, SO₄², NO₃⁻, and PO₄³⁻. GWQI was calculated by weighting parameters 

against WHO standards, while GIS mapped seasonal and spatial quality variations. PCA 

identified key factors driving quality changes, with the first component (69.7–83.84% 

variance) linking salinity (EC, TDS, TH) and nutrient pollution (NO₃⁻, PO₄³⁻) to 

agricultural practices and evaporation, and the second (17.15–30.3% variance) reflecting 

K⁺, SO₄²⁻, Na⁺, Mg²⁺, and Cl⁻, inversely related to TDS due to dilution. GWQI zonation 

showed good-to-excellent quality (0–50) in spring 2015, declining in autumn (50–75) due 

to evaporation and agricultural inputs, and improving in winter 2016 from rainfall 

infiltration. Eastern regions consistently exhibited poorer quality. The study highlights 

natural (evaporation, mineral dissolution) and anthropogenic (agriculture, contamination) 

influences on groundwater quality, with relative stability between 2015 and 2016 but 

notable seasonal variability. The integrated PCA, GWQI, and GIS approach, applied for 

the first time in this region, offers a robust framework for identifying critical zones and 

guiding localized management strategies. Biannual data and high-resolution mapping 

enhance methodological rigor, providing new insights into hydrogeochemical challenges 

and a dynamic tool for sustainable groundwater management. 
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1. Introduction 

Groundwater provides approximately one-third of the world’s freshwater supply and plays a pivotal role in sustaining domestic, 

industrial, and agricultural water demands, especially in arid and semi-arid regions where surface water resources are limited and 

unevenly distributed [1]. In countries such as Iran, which face both water scarcity and unequal spatial distribution of water resources, 

the management of groundwater quality is critically important. However, despite its strategic importance, rapid population growth, 

widespread industrialization, and intensive agricultural practices have led to the degradation and pollution of groundwater in many 

parts of the world. The consumption of contaminated groundwater poses serious threats to public health and can increase the 

prevalence of water-related diseases [2-4]. Accordingly, groundwater quality deterioration has become one of the principal global 

challenges to achieving sustainable development. In this context, multi-parameter evaluation and qualitative zoning through 

Geographic Information Systems (GIS) have emerged as effective tools for identifying critical quality zones and supporting 
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evidence-based water resource management. GIS facilitates spatial analysis and the visualization of complex hydrogeochemical 

datasets, enabling decision-makers to detect vulnerable areas with greater precision. The following section reviews relevant national 

and international studies related to this research focus . 

2. Literature review 

In Iran, due to the country’s heavy reliance on groundwater resources, numerous studies have been conducted to assess 

groundwater quality and delineate spatial patterns using GIS. Li et al. [5], utilizing data from 27 wells in Abadeh County and 

applying the Schuler diagram alongside various interpolation techniques, demonstrated that kriging with exponential and circular 

variograms yielded the most accurate results for drinking water quality zoning. Similarly, Maghami et al. [6] evaluated groundwater 

quality in the Malayer Plain using the Water Quality Index (WQI) and GIS-based interpolation methods such as kriging and Inverse 

Distance Weighting (IDW). Their findings indicated that IDW was more suitable for interpolating parameters like electrical 

conductivity (EC) and total dissolved solids (TDS) in areas with uniformly distributed data, emphasizing the importance of selecting 

appropriate interpolation methods to enhance the accuracy of quality maps. Sadeghi et al. [7] analyzed groundwater chemistry data 

from the Amol–Babol Plain (1986–2009) using FAO standards and GIS-based zoning. Their results revealed that pollution was 

more critical near industrial zones and densely populated cities, with contamination levels increasing during low-discharge years. 

The use of sampled water quality data for delineating pollution zones has also been explored in several studies [8-16]. 

At the international level, recent advancements in remote sensing, machine learning, and GIS have significantly enhanced 

groundwater quality assessment and zoning. Tabrizi et al. [17], in a study conducted in southern India, employed WQI and GIS to 

evaluate groundwater quality in a semi-arid region. By analyzing physicochemical parameters such as TDS, nitrate, and heavy 

metals, they identified critical zones and demonstrated the effectiveness of GIS in visualizing and managing water quality data. In 

another study, Adimalla et al. [3] used GIS and geostatistical methods to map groundwater quality in Dhaka, Bangladesh. By 

analyzing 15 quality parameters and applying statistical techniques such as the Mann-Kendall trend test and Sen’s Slope estimator, 

they assessed spatiotemporal variations and highlighted GIS as a powerful tool for detecting pollution trends. Karim et al. [18] 

investigated groundwater quality in the Achhnera region of Agra, India, by collecting and analyzing 50 samples. Their study 

employed WQI and Principal Component Analysis (PCA) to identify pollution sources. Results indicated that most samples were 

alkaline and unsuitable for drinking, underscoring the necessity of water treatment prior to consumption. 

A comprehensive review of previous studies on groundwater quality degradation and pollutant sources reveals an escalating 

global challenge, particularly in arid and semi-arid regions such as Iran. While multiple factors contribute to this trend, 

anthropogenic activities, including overexploitation, agricultural runoff, urban wastewater discharge, and industrial effluents, play 

a central role in groundwater contamination. Given the rising demand for water across agricultural and industrial sectors, and in the 

absence of integrated quantitative and qualitative management strategies, the downward trend in groundwater quality is expected to 

accelerate. This issue is especially critical in Chaharmahal and Bakhtiari province, where declining precipitation, population growth, 

and the province’s strategic role in supplying water to central and southwestern Iran amplify the urgency. Increased dependence on 

groundwater for agriculture, drinking, and industry, coupled with the widespread use of chemical fertilizers and rising volumes of 

municipal, industrial, and livestock wastewater, has intensified groundwater pollution in the region. 

In summary, population growth, agricultural expansion, and increased wastewater generation are the primary drivers of 

groundwater contamination in Chaharmahal and Bakhtiari. Therefore, a precise and up-to-date assessment of groundwater quality 

in this province is essential. This study aims to identify critical and polluted zones by evaluating groundwater quality using a 

comprehensive set of physicochemical indicators. Its innovative approach integrates multiple indices with GIS-based zoning 

techniques to provide a holistic and accurate depiction of groundwater status. This integrated methodology enables the identification 

of spatial pollution patterns and prioritization of management actions, thereby contributing to the development of effective strategies 

for groundwater protection and restoration. 

The following points highlight the innovative contributions of this study: 

• Integrates multiple physicochemical indices with GIS-based zoning for a comprehensive groundwater quality assessment. 

• Provides a novel spatial analysis of pollution patterns to identify critical and polluted zones accurately. 

• Enhances groundwater management by prioritizing targeted protection and restoration strategies. 

3. Methodology 

3.1. Study area 

Chaharmahal and Bakhtiari Province, covering an area of 16,533 km² in western Iran (Fig. 1), is situated within the Zagros 

Mountain range. The province’s highest elevation is Zardkuh Peak at 4,536 m above sea level, while its lowest point lies at the 

confluence of the Bazoft and Armand rivers in the Margak region, at 800 m. Geologically, most of the province belongs to the 

Zagros structural zone, with its northern part extending into the Sanandaj–Sirjan metamorphic belt. This mountainous region, located 

between the internal foothills of the Zagros and Isfahan Province, is part of Iran’s central plateau. Due to the region’s young orogenic 

activity and the presence of active fault systems, it is prone to natural hazards such as floods, earthquakes, and landslides. Fig. 1 

also presents the province’s digital elevation model (DEM) and land use classification. 

Thanks to its high-altitude terrain and exposure to moisture-laden Mediterranean air masses, the province receives relatively 
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high precipitation. Despite comprising only 1% of Iran’s land area, it contributes approximately 10% of the country’s total water 

resources. Snowfall and rainfall in the province’s highlands feed two of Iran’s most significant perennial rivers: the Karun and the 

Zayandeh-Rud, with respective catchment areas of 13,800 km² and 2,720 km². The Zayandeh-Rud is the only permanent river in 

Iran’s central plateau, while the Karun is the country’s largest river. However, both rivers face serious threats due to extensive dam 

construction and unsustainable inter-basin water transfers to provinces such as Yazd, Isfahan, and Kerman. With an average 

elevation of 2,153 m, the province features a rugged topography of hills and intermontane plains separated by mountain ridges. It 

includes 16 peaks exceeding 3,500 m in elevation (Fig. 1). These mountains extend from the northwest to the southeast of the 

province, gradually decreasing in height toward the east and into Isfahan Province. This transition leads to the formation of relatively 

broad plains such as Shahrekord, Farsan, Sefiddasht, Borujen–Faradonbeh, Kiar, Shalamzar, Gandoman–Boldaji, and Lordegan. 

Collectively, these plains account for approximately 24% of the province’s area and are composed of alluvial deposits that provide 

favorable conditions for agriculture. However, the aquifers beneath these plains are limited in capacity and have been severely 

overexploited. As a result, all plains in the province are currently classified as either critical, restricted, or restricted zones for 

groundwater extraction. Of the ten major plains, four-Borujen-Faradonbeh, Javanmardi, Sefiddasht, and Shahr-e Kord are in a 

critical restricted state, while the remaining four Kiar, Lordegan, Gandoman–Boldaji, and Falard are designated as restricted. 

 

Fig. 1. Location of the study area with topographic variation. 

3.2. Data collection and compilation 

The sustainable development of water resources in any country is highly dependent on the availability of comprehensive 

databases encompassing both baseline data and accurate quantitative and qualitative analyses. These databases play a pivotal role 

in infrastructure planning, water use optimization, and the effective management of this vital resource. Only through rigorous 

analysis of the multiple components of the hydrological cycle, including hydrological, climatic, and environmental characteristics, 

can the actual capacity of water resources be assessed to meet the demands of sustainable economic and social development, thereby 

enabling the successful implementation of national infrastructure projects. Chaharmahal and Bakhtiari Province, owing to its unique 

hydroclimatological features, hosts a network of high-discharge rivers and valuable watershed systems. However, existing 

investigations reveal that the available data on the quantity and quality of water resources in this region suffer from significant 

limitations and deficiencies. A large portion of the data has been recorded over short time intervals, and the lack of continuous 

monitoring at measurement stations has compromised the accuracy and reliability of the information. To evaluate groundwater 

quality in the study area, the measurement and analysis of key water quality parameters were deemed essential. In this study, data 

about the physical and chemical characteristics of groundwater including EC, pH, total hardness (TH), TDS, sodium adsorption 

ratio (SAR), sulfate (SO₄²⁻), chloride (Cl⁻), sodium percentage (Na%), potassium (K⁺), magnesium (Mg²⁺), and calcium (Ca²⁺) were 

examined for the years 2015 and 2016 (Table 1). These data were obtained in coordination with the Chaharmahal and Bakhtiari 

Regional Water Authority and collected using standard laboratory instruments such as portable EC and pH meters, as well as titration 

methods for hardness and ionic concentrations. Sampling and analytical protocols were conducted per the standards of the World 

Health Organization (WHO) and the Food and Agriculture Organization (FAO) to ensure data accuracy. Although the data used in 

this study were sourced from reputable institutions, limitations such as the absence of continuous monitoring at certain stations and 

the potential inclusion of reconstructed datasets may have affected the precision of the results. To mitigate these limitations, 

incomplete records were excluded, and only validated data were used in the analyses. Nevertheless, it should be noted that 

reconstructed datasets, even when developed using rigorous scientific methodologies, cannot fully match the quality of real-time 
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measurements, and thus, their reliability remains inherently constrained. 

Table 1. Number of sampling points in the study area. 

Total Winter Autumn Summer Spring Year 

196 0 64 22 110 1394 

180 62 77 37  1395 

3.3. Study approach 

To assess the groundwater quality across the plains of Chaharmahal and Bakhtiari Province, a total of 196 samples in 2015 and 

180 samples in 2016 were collected from various water sources, including operational wells, springs, and qanats. Sampling locations 

were purposefully selected to ensure adequate spatial coverage across the province’s diverse plains. The geographic coordinates of 

each sampling point were recorded using a GPS device and mapped in ArcGIS 10.8 (Fig. 2). Sampling was conducted during both 

wet and dry seasons of the study years to capture potential seasonal variations in water quality.  The collected data were statistically 

analyzed using SPSS version 24. Initially, the Kolmogorov–Smirnov test was applied to assess the normality of data distribution. 

Descriptive statistics, including mean, median, standard deviation, minimum, and maximum, were calculated for each parameter. 

To evaluate interannual differences between 2015 and 2016, a paired t-test was employed. 

Additionally, Pearson correlation analysis was conducted to identify relationships between key water quality parameters, such 

as the correlation between EC and TDS. For spatial distribution mapping of groundwater quality parameters, ArcGIS 10.8 was used. 

The Kriging interpolation method was selected due to its high accuracy in modeling spatially heterogeneous data. This method was 

applied to generate zoning maps for key parameters such as EC, TDS, SAR, and pH, delineating areas with suitable and unsuitable 

water quality for drinking and agricultural purposes. To evaluate groundwater suitability for drinking, the results were compared 

with WHO standards, and for agricultural use, with FAO guidelines. The key water quality indicators assessed in this study include: 

- EC: Indicates water salinity and its impact on agricultural use. 

- SAR: Assesses irrigation suitability based on sodium’s effect on soil permeability. 

- TH: Reflects concentrations of calcium and magnesium, relevant to drinking and industrial use. 

- TDS: A general indicator of water quality for both drinking and irrigation consumption. 

- pH and Major Ions (SO₄²⁻, Cl⁻, Na⁺, K⁺, Mg²⁺, Ca²⁺): Used to evaluate chemical equilibrium and environmental implications. 

These indicators were assessed per international standards and local hydrogeological conditions to support informed decision-

making for optimal groundwater resource management. 

 

Fig. 2. Spatial distribution of sampling points in the study area during 2015 and 2016. 
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3.4. Groundwater quality index (GWQI) 

The Groundwater Quality Index (GWQI) is one of the most widely used indices for qualitative zoning of water resources. 

Compared to other existing models, it presents fewer limitations and is frequently adopted by researchers due to its simplicity and 

the accessibility of required quality parameters. This index is calculated based on values of key indicators such as pH, TDS, Cl⁻,  

Ca²⁺, Mg²⁺, SO₄²⁻, HCO₃⁻, and Na⁺. GWQI is a reverse-scale index, meaning that as the level of contamination increases, the index 

value decreases. The method integrates the cumulative effect of multiple water quality parameters into a single numerical value that 

reflects the overall groundwater quality. The number and type of parameters used in the calculation are flexible and adaptable 

depending on the study objectives and data availability. Typically, WHO drinking water standards are employed as reference 

thresholds in GWQI computation, making the index a reliable indicator of potability. A critical aspect of GWQI calculation is the 

identification of parameters with the highest and lowest sensitivity to the index outcome. To address this, a sensitivity analysis is 

applied to determine the influence of each parameter on the final GWQI score [19]. 

(1) 𝐺𝑊𝑄𝐼 =∑𝑆𝐼𝑖 =∑(𝑊𝑖 × 𝑞𝑖) =∑((
𝑤𝑖

∑ 𝑤𝑖
𝑛
𝑖=1

) × (
𝐶𝑖
𝑆𝑖
× 100)) 

where the variables are defined as follows: 

- 𝑊𝑖: Weight of parameter i 

- 𝑞𝑖: Quality rating of parameter i, calculated by normalizing the measured concentration 

- 𝐶𝑖: Measured concentration of parameter i 

- 𝑆𝑖: Standard or guideline value for parameter i, based on international benchmarks such as the WHO for drinking water 

or the FAO for agricultural use 

Two main approaches are employed for the evaluation of the GWQI: 

a) GIS-based method 

In this approach, groundwater quality data such as EC, pH, TDS, TH, SAR, and concentrations of major ions are collected from 

sampling points. These data are processed using ArcGIS 10.8, and spatial distribution maps for each parameter are generated through 

geostatistical interpolation techniques, such as Kriging. The individual parameter maps are then integrated using assigned relative 

weights, reflecting the significance of each parameter for the intended use (drinking or irrigation). The final GWQI map is created 

based on this weighted overlay. GWQI values are normalized within a 0–100 range, where values near 0 indicate excellent water 

quality and those near 100 represent poor quality. In addition, sensitivity analysis is conducted to evaluate the impact of excluding 

individual parameter maps on the accuracy of the GWQI. This method enables the spatial identification of groundwater quality 

patterns and critical zones, making it highly effective for regional-scale water resource management. 

b) Data-driven method 

The data-driven approach relies on the analysis of point-based field data for assessing groundwater quality. It computes the 

GWQI as a unitless score ranging from 1 to 100 based on observed concentrations. Due to its relative simplicity and minimal 

dependency on advanced geospatial tools, this method is suitable for studies with limited computational resources or a focus on 

non-spatial analysis. In this approach, lower GWQI values correspond to better groundwater quality, while higher values indicate 

deterioration. The classification of groundwater based on GWQI is presented in Table 2. 

Table 2. Classification of groundwater quality based on GWQI. 

Index Value Water Quality Classification 

0-25 Excellent (Suitable for all uses) 

25-50 Good (Suitable for drinking and irrigation with minor limitations) 

50-75 Moderate (Use with caution for specific purposes) 

75-100 Poor (Requires treatment for drinking or has agricultural limitations) 

100-125 Very Poor 

More than 125 Unsuitable (Unusable without extensive treatment) 

3.5. Graphical methods for groundwater quality assessment 

Most approaches employed in groundwater quality studies are graphical, where the results of water sample analyses are presented 

using diagrams such as Piper, Chadha, Stiff, Wilcox, and Schoeller plots. One limitation of graphical methods lies in the number of 

samples and variables they can effectively handle. Moreover, graphical techniques cannot distinguish between sample groups or 

test for similarity among them. In contrast, statistical methods do not suffer from these constraints and are increasingly applied in 

groundwater quality investigations. However, a drawback of statistical methods is that they do not directly convey the chemical 

composition of the samples, and their results are not as readily interpretable in the context of hydrochemical processes and trends. 

Therefore, combining graphical and statistical approaches can retain the strengths of each while minimizing their limitations. In this 

study, the Piper trilinear diagram was utilized to classify groundwater types and hydrochemical facies. The use of triangular 

diagrams for hydrochemical data representation was first introduced by Hill and later developed by Piper, whose diagram became 

widely adopted globally. In Piper diagrams, ions are plotted as percentages of milliequivalents per liter in two separate triangles 
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representing cations and anions. These values are then projected into a central diamond field for comparative analysis. The Piper 

diagram enables the simultaneous comparison of a large number of analyzed samples. The size of plotted circles on the diagram 

may also represent TDS content. Overall, the Piper diagram presents the chemical characteristics of water based on the relative 

concentrations of its constituents [20]. 

Following the collection and preprocessing of statistical data, groundwater quality zoning maps were developed using ArcGIS 

10.8. The GIS is an advanced computational platform for acquiring, storing, analyzing, and visualizing spatial data. It offers a unique 

capability to integrate, organize, and interpret spatial relationships among various parameters. In GIS, all data possess geographic 

attributes and can be effectively visualized. One of its numerous applications lies in the field of public health [21], where the spatial 

linkage of environmental and health data facilitates informed decision-making [22]. Identifying geographic areas at risk is 

considered a fundamental step in implementing preventive and therapeutic measures to mitigate risk factors and their societal 

consequences. Based on previous research and the outcomes of related studies, the strengths and limitations of each method can be 

assessed to provide actionable insights for future investigations. Owing to the versatility and effectiveness of GIS in various 

domains, it is also employed in the qualitative zoning of groundwater resources. 

3.6. Determination of spatial distribution patterns of indicators 

Understanding and comparing environmental phenomena inherently require their quantification or measurement. In principle, 

point-based data derived from sampling sites are insufficient on their own, and it is essential to spatially extend and generalize such 

information. To spatially interpolate point data considering both the spatial and temporal variability of each parameter, models are 

needed that can simulate the behavior of the studied variable at unsampled locations. Among these, geostatistical methods, such as 

Kriging, Co-Kriging, Thin Plate Spline Smoothing (TPSS), and Weighted Moving Average (WMA), are of considerable importance 

due to their incorporation of spatial correlation and the underlying spatial structure of the data. In geostatistics, not only the value 

of a measured variable but also the spatial coordinates of the sampling point are taken into account. Thus, it becomes possible to 

jointly analyze the spatial location and the corresponding quantitative attribute of each observation. 

Spatial visualization of raw environmental data using maps within a GIS facilitates more efficient and comprehensive 

communication of information compared to numerical indices alone. Moreover, due to the irregular nature of spatial variation, 

describing all changes solely through numerical indices is often unfeasible. Therefore, to describe and represent the spatial 

variability of a given parameter, it is necessary to estimate its values at unsampled points using the known data from sampled 

locations [23]. In this study, spatial autocorrelation analysis, interpolation of unsampled locations, and the generation of prediction 

maps and zoning layers were conducted using ArcGIS 10.8. The process of estimating the values of a continuous variable in areas 

where direct measurements are unavailable is referred to as interpolation. In essence, interpolation visualizes continuous spatial 

variation as a well-defined surface. It plays a fundamental role in the mapping, analysis, and interpretation of two-dimensional 

environmental data. Various interpolation techniques exist for estimating spatially and temporally variable parameters. These 

methods differ primarily in how they assign weights to known surrounding observations to estimate values at unknown locations. 

Based on prior studies and to extend point-based data into spatially continuous representations while ensuring computational 

efficiency and avoiding unnecessary complexity, the Kriging geostatistical method was selected for use in this study. 

3.7. Factor analysis 

One of the statistical methods used for analyzing data sets is Factor Analysis (FA). This method is similar to regression analysis; 

however, in FA, the observed variables are regressed on latent (unobservable) factors. The primary objective of factor analysis is to 

explain the covariance structure among variables through a limited number of random, unobserved quantities known as factors. In 

this approach, variables grouped within the same factor exhibit high intercorrelation, while those in separate groups show relatively 

low correlation. Several techniques exist for extracting factors within the framework of factor analysis, which are discussed further 

below. Among multivariate statistical techniques, Principal Component Analysis (PCA) is commonly used to identify the key 

parameters influencing groundwater quality, and in this study, it was applied to determine the most influential parameters in 

assessing groundwater quality in the plains of Chaharmahal and Bakhtiari Province. 

Among the spatial analysis methods, PCA is frequently employed for dimensionality reduction of input datasets. PCA aims to 

extract a smaller number of components that can capture the majority of the variance present in a large dataset, a process known as 

data reduction. This approach is particularly useful when the researcher does not wish to involve all original variables in the analysis 

but still requires the information they contain. PCA is a general technique for factor extraction that seeks to identify linear 

combinations of the variables that explain the maximum possible variance. Once the first principal component is extracted, its 

associated variance is removed, and the next principal component that explains the largest remaining variance is identified. This 

iterative process continues until the optimal number of components is determined. This method is also known as the principal axes 

method, which results in the creation of orthogonal (uncorrelated) axes [24]. 

PCA is considered one of the most powerful multivariate statistical tools and is particularly effective when dealing with large 

volumes of data, as it reduces the number of input variables without significant information loss. Initially, the input data were 

standardized using the appropriate formula in SPSS software. In the next step, the suitability of the dataset for PCA was assessed 

using the Kaiser-Meyer-Olkin (KMO) measure and Bartlett’s test of sphericity. To enhance the interpretability of the relationships 

between input variables and extracted components and to better distinguish their groupings, Varimax rotation was applied.  
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4. Results and discussions 

4.1. Comparative analysis of groundwater quality parameters 

To evaluate the groundwater quality status over a two-year period based on measured quality parameters, the statistical 

characteristics of the data were first presented for the summer season of 2015 and 2016 in Tables 3 and 4. The analysis of 

groundwater quality data during the summer of 2015 and 2016 across the Chaharmahal and Bakhtiari plains revealed that the average 

pH declined from 7.65 in 2015 to 7.22 in 2016, approaching a more neutral condition. This reduction in average pH in 2016 may be 

associated with increased inputs of organic or inorganic pollutants, such as wastewater infiltration or agricultural fertilizers. 

However, the pH levels in both years remained within the WHO recommended range for drinking water (6.5–8.5), indicating 

suitability for this purpose. 

EC and TDS increased from 448.64 µS/cm and 299.05 mg/L in 2015 to 466.46 µS/cm and 310.35 mg/L in 2016, respectively, 

indicating rising salinity levels in some areas. The increase in EC in 2016 suggests a higher concentration of dissolved ions or 

possible intrusion of saline water (e.g., from agricultural runoff or industrial wastewater). The broader EC range observed in 2016 

reflects localized zones with elevated salinity, which may impose constraints on agricultural use (FAO standard: EC < 700 µS/cm 

for salt-sensitive crops). The rise in TDS aligns with the EC trend, indicating an increase in overall dissolved solids. Despite this, 

TDS concentrations in both years remained below the WHO threshold for drinking water (< 1000 mg/L), though values nearing 663 

mg/L in some areas could pose limitations for sensitive crops. 

TH exhibited a significant increase from 176.98 to 274.97 mg/L, mainly due to a marked rise in magnesium concentration (from 

4.43 to 19.59 mg/L), while calcium and sodium levels decreased. The substantial rise in hardness in 2016 is likely related to increased 

concentrations of calcium and magnesium ions. In some locations, TH values approached the upper limit of the “hard” classification 

range (200–500 mg/L), which may affect drinking water palatability and lead to sedimentation issues in industrial applications. 

The decrease in mean sodium concentration in 2016 may indicate reduced saline water intrusion or changes in agricultural 

practices. However, the wider concentration range suggests the presence of localized high-sodium zones, which should be evaluated 

for their potential to cause soil sodicity in agricultural lands. 

A decline in potassium levels and reduced variability in 2016 (standard deviation of 0.015) could imply lower agricultural 

fertilizer inputs. The sharp rise in magnesium alongside a reduction in calcium may reflect underlying geological variations or 

differences in the sampled water sources, which could affect total hardness and warrant further hydrochemical investigation. The 

increase in sulfate concentration in 2016 may stem from agricultural activities (e.g., use of sulfate-based fertilizers) or wastewater 

infiltration, though values remained within the WHO guideline for drinking water (< 250 mg/L). The observed decrease in chloride 

concentration in 2016 may be indicative of reduced salinity or diminished saline water intrusion, with values in both years remaining 

acceptable for potable use. 

NO₃⁻ concentration showed a significant increase from an average of 1.61 to 15.16 mg/L, emerging as a potential concern for 

drinking water in some areas. The marked rise in nitrate levels in 2016 suggests possible contamination from nitrogenous fertilizers 

or sewage. Concentrations exceeding 39.1 mg/L in certain locations approach the WHO limit (50 mg/L), highlighting the need for 

stricter monitoring and management. 

Table 3. Descriptive statistics of groundwater quality parameters in the summer season of 2015. 

Variance SD Mean Maximum Minimum Parameters 

0.01 0.1 7.66 7.88 7.51 PH 

14475.19 120.3 448.64 556 228 EC(µs/cm) 

6242.9 79.01 299.04 369 153 TDS(mg/l) 

1158.1 34 176.98 280.8 160.2 TH 

0.086 0.292 0.51 1.3 0.1 K 

63.71 7.98 18.77 26 1 Na 

12.7 3.57 4.43 10.5 1 Mg 

159.13 12.6 63.57 97.4 47.4 Ca 

0.054 0.23 0.46 0.93 0.23 Sio3 

0.003 0.055 0.33 0.4 0.2 Br 

0.076 0.28 0.32 0.7 0.1 PO4 

5.03 0.24 6.21 8.2 1 NO2 

0.44 0.66 1.61 4.5 1.2 NO3 

199.32 14.11 14.23 50 1 SO4 

46 6.78 34.67 49.7 21.8 Cl 

0 0.016 0.059 0.1 0.03 F 
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Table 4. Statistical characteristics of groundwater quality parameters in summer 2016. 

Variance SD Mean Maximum Minimum Parameters 

0.069 0.62 7.22 7.5 6.5 PH 

36208.42 190.28 466.46 1004 193 EC(µs/cm) 

15982.4 126.42 310.35 663 128 TDS(mg/l) 

6923 83.2 274.96 524.8 180 TH 

0 0.015 0.387 0.41 0.38 K 

72.75 8.53 12.3 41.39 1.69 Na 

56.67 7.53 19.59 27.56 12.6 Mg 

165.9 12.88 21.87 38 6.73 Ca 

0.001 0.033 0.051 0.14 0 NO2 

116.84 10.81 15.16 39.1 0 NO3 

297.68 17.25 17.8 30 5.6 SO4 

333 18.25 31 43 10 Cl 

4.2. Hydrochemical analysis of groundwater using the Piper diagram 

Based on the chemical composition of groundwater samples collected during autumn and winter of 2016, the hydrogeochemical 

facies and groundwater types were interpreted using the Piper diagram (Figs. 3 and 4). In autumn 2016, the dominant hydrochemical 

facies was Ca–HCO₃ (calcium–bicarbonate), indicating fresh groundwater typically associated with karstic origins or interaction 

with carbonate formations. The prevailing water type was calcium–bicarbonate, although some samples exhibited a tendency toward 

mixed facies such as Ca–Na–HCO₃–Cl, likely due to elevated sodium and chloride concentrations. The formation of this facies 

during autumn can be attributed to the following factors: 

- The presence of carbonate formations (e.g., limestone and dolomite) in the region enhances calcium and bicarbonate 

concentrations through mineral dissolution. 

- Relatively high concentrations of chloride and sodium in certain locations, potentially linked to agricultural return flows (e.g., 

chloride- or sodium-based fertilizers) or wastewater infiltration. 

- Carbonate mineral dissolution and ion exchange processes within the aquifer system, contributing to the development of the Ca–

HCO₃ facies. 

In winter 2016, the dominant hydrochemical facies shifted to Mg–HCO₃ or Ca–Mg–HCO₃, reflecting increased magnesium 

concentrations alongside bicarbonate. In some areas with elevated nitrate and sodium, mixed facies such as Mg–Na–HCO₃–Cl were 

also observed. The prevailing water types were magnesium–bicarbonate or calcium–magnesium–bicarbonate, with certain samples 

trending toward Mg–HCO₃–SO₄ facies due to increased nitrate and sulfate levels. The formation of these facies in winter can be 

explained by: 

- Elevated magnesium concentrations, likely resulting from the dissolution of dolomitic minerals (CaMg(CO₃)₂) within the 

aquifer. 

- Increased nitrate levels, probably due to the infiltration of nitrogen-based fertilizers or agricultural/urban wastewater. Elevated 

sulfate may also be linked to the use of sulfate-containing fertilizers. 

- Changes in groundwater flow patterns or reduced aquifer recharge, potentially leading to higher ion concentrations during the 

winter season. 

4.3. Factors influencing groundwater quality variation based on PCA 

To identify and interpret the key factors controlling groundwater quality variation, PCA was performed on the dataset of water 

quality parameters. This multivariate statistical method reduces the dimensionality of the dataset by extracting a set of uncorrelated 

components (principal components), each representing a group of interrelated parameters that together explain a significant portion 

of the total variance. The factor loadings for each parameter on each component indicate the strength and direction of its contribution 

to the formation of that component.  Based on the average water quality data collected over the two-year study period, the factor 

loadings and the percentage of variance explained by each principal component were extracted for the years 2015 and 2016, as 

shown in Tables 5 and 6. The PCA results for the year 2015 are interpreted as follows: 

Principal Component 1 (PC1) in Table 5 accounts for the largest share of variance (84.83%) and is dominated by strong 

negative loadings for pH, PO₄, NO₃, Cl, and F, and strong positive loadings for EC, TDS, TH, Na, Ca, SiO₃, Br, and Mg. Based on 

this component, the hydrogeochemical variations observed in the aquifer can be attributed to the following: 

• Salinity and Hardness Effects: The strong positive loadings for EC, TDS, TH, Na, Ca, and Mg indicate the critical role 

of evaporative concentration, mineral dissolution (e.g., carbonates and sulfates), and the intrusion of saline water or 

mineralized surface water in governing groundwater hydrogeochemistry. These may be linked to agricultural activities, 

irrigation, or seawater intrusion in coastal areas. 
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Fig. 3. Piper diagram of water samples in autumn 2016. 

 
 

 

Fig. 4. Piper diagram of water samples in winter 2016. 

• Influence of Specific Ions and Pollution Sources: The positive loadings for SiO₃ and Br may reflect natural geogenic 

sources such as silicate minerals or deeper groundwater inputs, while the strong negative loadings for Cl and F suggest 

potential anthropogenic contamination (e.g., wastewater discharge or agricultural fertilizers) or localized geochemical 

conditions. 

• pH and Nutrient Interactions: The strong negative loading for pH suggests an inverse relationship between acidity and 

salinity/hardness parameters, which could be attributed to buffering effects from dissolved minerals or biological activities 

such as organic matter degradation. 

• The negative loadings for PO₄ and NO₃ may indicate agricultural contamination sources (e.g., nitrogen and phosphorus-

based fertilizers) that inversely correlate with salinity, possibly due to dilution effects or adsorption in soil matrices. 

Overall, PC1 represents a dominant hydrogeochemical gradient characterized by increased salinity/hardness (positive loadings) 

versus reduced pH and nutrient levels (negative loadings). This pattern likely results from the interaction between mineral 

dissolution, evaporation, saline water intrusion, and anthropogenic pollution. For example, elevated EC and TDS may result from 

surface water infiltration or evaporation in arid zones, whereas reduced pH and elevated nutrient indicators may reflect domestic 
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wastewater or agricultural runoff. In essence, PC1 illustrates a prevailing hydrogeochemical process involving increased 

groundwater salinity and hardness due to mineral dissolution and saline intrusion, counteracted by nutrient pollution (phosphate and 

nitrate) and associated pH variations. To interpret this component more precisely, local variables such as soil type, climate, and land 

use must also be considered. 

Principal Component 2 (PC2) explains a smaller share of the variance (15.17%) and is primarily characterized by high positive 

loadings for potassium (K: 0.960) and sulfate (SO₄: 0.976). The origin of groundwater quality variations represented by this 

component can be explained as follows: 

• The strong loading for potassium indicates its significant influence within PC2, which could be linked to the weathering 

of potassium-bearing minerals (e.g., K-feldspar, mica) in the aquifer matrix or the leaching of potassium-rich water (e.g., 

from agricultural fertilizers). Elevated potassium levels may thus be associated with agricultural practices or selective 

weathering processes. 

• The very high loading for sulfate highlights its importance in this component, which may originate from the dissolution of 

sulfate minerals (e.g., gypsum or anhydrite) or the oxidation of sulfide minerals (e.g., pyrite) in the subsurface. Elevated 

SO₄ concentrations may also reflect anthropogenic inputs such as industrial or agricultural runoff containing sulfate 

compounds. 

Generally, this component appears to represent a secondary hydrogeochemical gradient governed by potassium and sulfate 

concentrations, in contrast to the dominant salinity and hardness parameters in PC1. PC2 may reflect localized processes such as 

selective mineral weathering, infiltration of sulfate-rich water, or point-source pollution. Moreover, the strong correlation between 

K and SO₄ may indicate a common source (e.g., potassium-sulfate fertilizers) or specific geochemical interactions within the 

groundwater system. Thus, PC2 represents a secondary hydrogeochemical process influenced by potassium and sulfate sources 

either geogenic (e.g., mineral weathering) or anthropogenic (e.g., fertilizer use or industrial discharge). 

Table 5. Varimax-rotated principal component matrix of groundwater physicochemical parameters for the year 2015. 

Component PH EC TDS TH K Na Mg Ca 

1 -0.997 0.998 0.994 0.984 -0.28 0.918 0.989 0.997 

2 0.08 0.06 -0.107 0.176 0.96 -0.396 0.15 0.079 

Component Sio3 Br PO4 NO2 NO3 SO4 Cl F 

1 0.965 0.961 -0.96 -0.995 0.999 0.218 -0.951 0.958 

2 -0.263 -0.277 -0.276 0.102 0.036 0.976 0.309 -0.285 

In 2016, the status of the dominant components is as follows: 

As shown in Table 6, PC1 accounts for 69.7% of the total variance. This component is characterized by strong negative loadings 

for EC, TDS, TH, Ca, and Cl, and strong positive loadings for pH, K, Na, PO₄, HCO₃, SO₄, Cl, and NO₃. The strong negative 

loadings suggest that carbonate and sulfate mineral dissolution (e.g., calcite) and saline water intrusion play a significant role in 

degrading groundwater quality. These processes may be associated with evaporation, surface water infiltration, or irrigation 

practices. Meanwhile, the strong positive loadings for pH, PO₄, and NO₃ indicate the influence of acid–base buffering conditions 

and nutrient-related pollution. The rise in pH may result from natural buffering mechanisms or biological activity, such as the 

decomposition of organic matter. The presence of PO₄ and NO₃ may reflect contamination from agricultural fertilizers or domestic 

wastewater. Positive loadings for Na, K, HCO₃, and SO₄ highlight diverse geochemical sources, including mineral dissolution (e.g., 

sodium carbonate or sulfate minerals) and the infiltration of bicarbonate-enriched water. The appearance of Cl with both negative 

and positive loadings in this component may suggest multiple pollution sources. 

The similarity of the PC1 loading pattern to that of 2015  with comparable contributing parameters  suggests relative consistency 

in the dominant hydrogeochemical processes. However, the change in loading direction for parameters such as Cl (from negative to 

positive) may indicate shifts in water sources, intensified anthropogenic activities (e.g., agriculture or industry), or climatic 

variations (e.g., rainfall or drought) during 2016. 

In summary, PC1 in 2016 reflects the combined influence of salinity, hardness, and mineral dissolution, along with nutrient 

pollution (phosphate and nitrate) and pH fluctuations. This pattern likely stems from agricultural practices, saline water intrusion, 

and environmental interactions. A comparison with 2015 indicates the persistence of these processes, with minor changes in the 

source and dominance of specific ions. 

PC2 explains 30.3% of the total variance in 2016 and shows strong positive loadings for Na, Mg, SO₄, and Cl, along with a 

strong negative loading for TDS. The high positive loadings for Na and Mg point to the influence of mineral dissolution processes, 

such as the weathering of halite, dolomite, or chlorite, or the infiltration of ion-rich waters. This may be related to the weathering 

of evaporite rocks or the percolation of surface water. 

The strong positive loadings for SO₄ and Cl suggest dissolution of sulfate-bearing minerals (e.g., gypsum) or chloride-rich 

sources (e.g., halite), as well as possible contamination from saline water intrusion or anthropogenic sources, such as wastewater 

discharge or agricultural runoff. This pattern may reflect the influence of evaporation or human activity on groundwater chemistry. 

The strong negative loading for TDS suggests an inverse relationship between TDS and the positively loaded ions, possibly 

indicating selective enrichment of Na, Mg, SO₄, and Cl under conditions of localized dilution (e.g., rainfall events or infiltration of 
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lower-TDS water). Thus, PC2 appears to represent a secondary geochemical gradient, primarily associated with the selective 

dissolution of Na, Mg, SO₄, and Cl-bearing minerals and an opposing trend in total salinity. This may result from the interplay of 

weathering, localized evaporation, and the mixing of groundwater with chemically distinct waters. The negative loading of TDS 

could reflect dilution events during the 2016 period. 

Table 6. Rotated component matrix for physicochemical parameters in 2016. 

Component PH EC TDS TH K Na Mg 

1 0.999 -0.976 -0.975 -0.983 0.9 0.419 -0.352 

2 -0.053 0.217 0.224 -0.184 0.436 0.908 0.936 

Component Ca PO4 NO2 NO3 HCO3 SO4 Cl 

1 -0.973 0.984 0.34 0.959 0.971 0.694 -0.47 

2 0.233 -0.175 -0.941 -0.285 -0.239 0.72 0.883 

4.4. Aquifer quality assessment based on GWQI 

By applying weighted values to the collected groundwater quality variables, GWQI was calculated and seasonally zoned across 

Chaharmahal and Bakhtiari Province, enabling both spatial and temporal evaluation of groundwater quality. As outlined in Section 

3.4, Part a, this study utilized point data collected from water resources within the aquifer to calculate the Groundwater Quality 

Index (GWQI) and map its distribution across the aquifer. The GWQI was computed using the parameters pH, EC, TDS, Cl⁻, Ca²⁺, 

Mg²⁺, SO₄²⁻, TH, NO₃, K, and Na⁺, each assigned different weights based on their respective impacts and sensitivity to aquifer 

quality degradation. The weights assigned to the parameters, along with their respective standard values, have been incorporated 

into the manuscript as Table 7. The arrangement of weights and their relative importance were determined based on 

recommendations from previous studies, and no sensitivity analysis was conducted for individual parameters. 

Table 7. Standard values (WHO (2017)) of quality parameters used in GWQI calculation and their assigned weights. 

Parameter* pH EC TDS TH K Na Mg Ca SO4 Cl NO3 

Standard Value 8.5 750 500 200 12 0.419 50 75 250 250 50 

Assigned Weight 4 4 4 2 2 4 2 2 4 3 5 

* The units of all parameters, except for pH (dimensionless) and EC (µs/cm), are in mg/L. 

The analysis of GWQI variations in spring 2015 indicates that large portions of the study area, particularly in the central and 

eastern regions, fall within the “good to excellent” quality range. This favorable condition is likely attributed to spring rainfall 

infiltration. As illustrated in Fig. 5, groundwater quality during this season predominantly lies within the 0–50 range, reflecting a 

relatively favorable aquifer status. In contrast, the GWQI map for autumn 2015 reveals a relative decline in groundwater quality 

compared to spring, especially in areas where GWQI values range between 50 and 75. This seasonal degradation may be linked to 

increased evaporation, reduced precipitation, and intensified agricultural activities. The latter, particularly the use of fertilizers, 

could have contributed to elevated concentrations of nitrate (NO₃⁻) and phosphate (PO₄³⁻), a trend consistent with the positive 

loadings for these parameters observed in the earlier PCA results. 

 

Fig. 5. Seasonal zoning map of GWQI in spring and autumn 2015. 
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The analysis of groundwater quality variations in 2016 reveals that during the winter season, due to limited rainfall infiltration 

and the presence of anthropogenic pollution in urban areas, low-quality patches emerged in the eastern parts of the aquifer (Fig. 6). 

Overall, however, a relative stabilization and improvement in groundwater quality compared to the previous year was observed, 

based on the GWQI. 

 

Fig. 6. Seasonal zoning map of GWQI in autumn and winter 2016. 

5. Conclusions 

Based on qualitative data collected over two years (2015–2016), the groundwater quality status across the aquifers of 

Chaharmahal and Bakhtiari Province was assessed, and the potential sources of quality variation were identified. The key findings 

are summarized as follows: 

• The increase in TDS in 2016 correlates with elevated EC levels, indicating a rise in dissolved salts. Although the values 

remain within acceptable limits for drinking, they may pose challenges for salt-sensitive agricultural activities. 

• A notable increase in water hardness, primarily attributed to elevated magnesium concentrations, may adversely affect 

domestic usage (taste) and industrial applications (scaling issues). 

• The decline in mean sodium concentration suggests a potential reduction in saline water intrusion or changes in agricultural 

irrigation practices. However, the wider range of sodium values in 2016 highlights localized hotspots of high sodium 

concentration, raising concerns over sodicity hazards in agricultural soils. 

• The observed reduction and homogenization of potassium levels in 2016 may indicate a decrease in agricultural fertilizer 

input. 

• The increase in magnesium and concurrent decrease in calcium concentrations could be attributed to geological variations 

or differences in water source lithology at the sampling locations. 

• The elevated sulfate levels may stem from agricultural activities, such as the application of sulfate-based fertilizers or 

wastewater infiltration. Nevertheless, the concentrations remain within safe limits for drinking water. 

• The decline in chloride concentrations may reflect a reduction in salinity levels or a diminished influx of saline water, with 

values deemed suitable for drinking in both years. 

• A significant increase in nitrate was identified in some locations, representing a potential health risk for drinking water and 

indicating the necessity for enhanced nitrate monitoring. 

• Hydrogeochemical analysis of groundwater during the autumn and winter seasons of 2016 revealed seasonal variability in 

dominant hydrochemical facies: Ca-HCO₃ type in autumn and Mg-HCO₃ or Ca-Mg-HCO₃ types in winter. This shift may 

result from interactions between groundwater and carbonate/dolomitic formations, surface pollutant infiltration (especially 

in winter), and changes in groundwater flow dynamics, contributing to facies heterogeneity in the aquifer. 

• PCA of groundwater quality data indicated that the first principal component (explaining up to 83.84% of variance in 2015 

and 69.7% in 2016) is associated with salinity, hardness, and nutrient-related contamination (nitrate and phosphate), 

inversely influenced by pH and mineral dissolution, and predominantly linked to agricultural activities and evaporation. 
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The second component (17.15% in 2015 and 30.3% in 2016) reflects the presence of specific ions (K, SO₄, Na, Mg, Cl) 

and TDS dilution effects, pointing to mineral weathering and saline water intrusion. The persistence of these patterns across 

both years, despite minor shifts in ion sources, emphasizes the need for local-scale groundwater management and 

monitoring. 

6. Recommendations for future research 

• Enhanced nitrate monitoring: Given the significant increase in nitrate concentrations, reaching values near the WHO 

permissible limit, it is essential to conduct frequent and seasonally distributed monitoring across all sampling sites. 

• Detailed hydrogeochemical analysis: To better understand the drivers of ion concentration changes, particularly for Mg, 

Ca, and Na, more comprehensive hydrogeochemical evaluations are required. These should include ion ratio analysis, 

saturation index calculations, and hydrochemical modeling. 

• Pollution source identification: To determine the origins of nitrate and sulfate, detailed investigations into agricultural 

practices (types and application rates of fertilizers) and the presence of wastewater sources are crucial. This includes 

assessment of sewage systems, septic tanks, and agricultural drainage systems. 

• Agricultural impact assessment: Given the increased TDS and localized high sodium levels, it is necessary to assess the 

implications for regional crop production. This could involve soil testing, monitoring of plant toxicity or deficiency 

symptoms, and consultation with agronomic experts. 

• Soil sodicity risk evaluation: Due to the wide range of sodium values, it is recommended to compute the SAR in different 

areas and assess the sodicity hazard. If risk is confirmed, mitigation strategies such as soil amendments and improved 

drainage systems should be implemented. 

• Human health risk assessment: Considering the increase in hardness and nitrate, evaluating the potential public health 

impacts is imperative. This could involve reviewing health records for waterborne diseases, conducting epidemiological 

studies, and issuing health advisories for the local population. 

• Comparison with historical datasets: To gain a more comprehensive understanding of groundwater quality trends, it is 

essential to compare the two-year dataset with long-term historical records. This comparison can reveal temporal patterns 

and assist in identifying underlying causes of quality changes. 
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