Thermo-Mechanical Behavior of High-Strength Concrete with Nylon Granule Aggregates: Experimental Evaluation and Predictive Analysis

Document Type : Original Article

Authors

Department of Civil Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran

Abstract

In recent years, incorporating polymer trash as a substitute for natural aggregates in cementitious material has emerged as a sustainable approach to minimize environmental impact. Despite growing interest, limited studies have addressed the mechanical and microstructural performance of high-strength concrete (HSC) incorporating polymer waste under elevated temperature conditions. This research investigates the residual stress-strain response of HSC incorporating nylon granules (NG) as a partial substitute for natural sand at proportions of 0, 10, and 20%. Specimens were subjected to axial compressive loading after exposure to high temperatures of 20, 300, and 600°C. The analysis covered several physical and mechanical characteristics such as loss of weight, compressive strength, splitting tensile strength, elastic modulus, strain at peak stress, ultimate strain, toughness, stress-strain model, visual changes, and microstructure. The experimental findings were benchmarked against established codes and standards, including ACI 216, ASCE, EN 1994-1-2, EN 1992-1-2, and CEB-FIP. Results demonstrated that higher temperatures substantially impaired concrete performance, with compressive strength and modulus of elasticity declining by approximately 59% and 75%, respectively, at 600°C. Furthermore, the inclusion of NG led to additional reductions in mechanical performance. Based on the experimental observations, predictive models were formulated for mechanical properties, and a stress-strain model for NG-modified concrete was developed, which correlated well with the experimental results

Keywords

Main Subjects


  1. Li, D., Zhuge, Y., Gravina, R., Mills, J. E. Compressive Stress Strain Behavior of Crumb Rubber Concrete (CRC) and Application in Reinforced CRC Slab. Construction and Building Materials, 2018; 166: 745–759. doi:10.1016/j.conbuildmat.2018.01.142.
  2. Zarei, M., Rahmani, Z., Zahedi, M., Nasrollahi, M. Technical, Economic, and Environmental Investigation of the Effects of Rubber Powder Additive on Asphalt Mixtures. Journal of Transportation Engineering, Part B: Pavements, 2020; 146 (1): 04019039. doi:10.1061/jpeodx.0000142.
  3. Tayebi, M., Nematzadeh, M. Post-Fire Flexural Performance and Microstructure of Steel Fiber-Reinforced Concrete with Recycled Nylon Granules and Zeolite Substitution. Structures, 2021; 33: 2301–2316. doi:10.1016/j.istruc.2021.05.080.
  4. Thomas, B. S., Chandra Gupta, R. Properties of High Strength Concrete Containing Scrap Tire Rubber. Journal of Cleaner Production, 2016; 113: 86–92. doi:10.1016/j.jclepro.2015.11.019.
  5. Gupta, T., Chaudhary, S., Sharma, R. K. Assessment of Mechanical and Durability Properties of Concrete Containing Waste Rubber Tire as Fine Aggregate. Construction and Building Materials, 2014; 73: 562–574. doi:10.1016/j.conbuildmat.2014.09.102.
  6. Pelisser, F., Zavarise, N., Longo, T. A., Bernardin, A. M. Concrete Made with Recycled Tire Rubber: Effect of Alkaline Activation and Silica Fume Addition. Journal of Cleaner Production, 2011; 19 (6–7): 757–763. doi:10.1016/j.jclepro.2010.11.014.
  7. Mousavimehr, M., Nematzadeh, M. Predicting Post-Fire Behavior of Crumb Rubber Aggregate Concrete. Construction and Building Materials, 2019; 229. doi:10.1016/j.conbuildmat.2019.116834.
  8. Wang, H. Y., Chen, B. T., Wu, Y. W. A Study of the Fresh Properties of Controlled Low-Strength Rubber Lightweight Aggregate Concrete (CLSRLC). Construction and Building Materials, 2013; 41: 526–531. doi:10.1016/j.conbuildmat.2012.11.113.
  9. Al-Tayeb, M. M., Abu Bakar, B. H., Akil, H. M., Ismail, H. Performance of Rubberized and Hybrid Rubberized Concrete Structures under Static and Impact Load Conditions. Experimental Mechanics, 2013; 53 (3): 377–384. doi:10.1007/s11340-012-9651-z.
  10. Yung, W. H., Yung, L. C., Hua, L. H. A Study of the Durability Properties of Waste Tire Rubber Applied to Self-Compacting Concrete. Construction and Building Materials, 2013; 41: 665–672. doi:10.1016/j.conbuildmat.2012.11.019.
  11. Yilmaz, A., Degirmenci, N. Possibility of Using Waste Tire Rubber and Fly Ash with Portland Cement as Construction Materials. Waste Management, 2009; 29 (5): 1541–1546. doi:10.1016/j.wasman.2008.11.002.
  12. Nematzadeh, M., Mousavimehr, M. Residual Compressive Stress–Strain Relationship for Hybrid Recycled PET–Crumb Rubber Aggregate Concrete after Exposure to Elevated Temperatures. Journal of Materials in Civil Engineering, 2019; 31 (8). doi:10.1061/(asce)mt.1943-5533.0002749.
  13. Gjørv O. E. High-strength concrete. Developments in the Formulation and Reinforcement of Concrete. 2008. Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/b978-0-08-102616-8.00007-1.
  14. Ferreira R. M, Jalali S., Gjørv O. E. Probabilistic assessment of the durability performance of concrete structures. Engenharia Civil UM, 2004; 39-48.
  15. Singh, S., Nagar, R., Agrawal, V., Rana, A., Tiwari, A. Sustainable Utilization of Granite Cutting Waste in High Strength Concrete. Journal of Cleaner Production, 2016; 116: 223–235. doi:10.1016/j.jclepro.2015.12.110.
  16. Mohammed, A. A., Karim, S. H. Impact Strength and Mechanical Properties of High Strength Concrete Containing PET Waste Fiber. Journal of Building Engineering, 2023; 68. doi:10.1016/j.jobe.2023.106195.
  17. Bilow, D. N., Kamara, M. E. Fire and Concrete Structures. Proceedings of the 2008 Structures Congress - Structures Congress 2008: Crossing the Borders, 2008; 314: 1–10. doi:10.1061/41016(314)299.
  18. Hassanli, R., Youssf, O., Mills, J. E. Experimental Investigations of Reinforced Rubberized Concrete Structural Members. Journal of Building Engineering, 2017; 10: 149–165. doi:10.1016/j.jobe.2017.03.006.
  19. Xue, J., Shinozuka, M. Rubberized Concrete: A Green Structural Material with Enhanced Energy-Dissipation Capability. Construction and Building Materials, 2013; 42: 196–204. doi:10.1016/j.conbuildmat.2013.01.005.
  20. Karimi, A., Nematzadeh, M. Axial Compressive Performance of Steel Tube Columns Filled with Steel Fiber-Reinforced High Strength Concrete Containing Tire Aggregate after Exposure to High Temperatures. Engineering Structures, 2020; 219. doi:10.1016/j.engstruct.2020.110608.
  21. Guo, Y. C., Zhang, J. H., Chen, G. M., Xie, Z. H. Compressive Behaviour of Concrete Structures Incorporating Recycled Concrete Aggregates, Rubber Crumb and Reinforced with Steel Fibre, Subjected to Elevated Temperatures. Journal of Cleaner Production, 2014; 72: 193–203. doi:10.1016/j.jclepro.2014.02.036.
  22. Nematzadeh, M., Shahmansouri, A. A., Fakoor, M. Post-Fire Compressive Strength of Recycled PET Aggregate Concrete Reinforced with Steel Fibers: Optimization and Prediction via RSM and GEP. Construction and Building Materials, 2020; 252. doi:10.1016/j.conbuildmat.2020.119057.
  23. Gupta, T., Siddique, S., Sharma, R. K., Chaudhary, S. Effect of Elevated Temperature and Cooling Regimes on Mechanical and Durability Properties of Concrete Containing Waste Rubber Fiber. Construction and Building Materials, 2017; 137: 35–45. doi:10.1016/j.conbuildmat.2017.01.065.
  24. Marques, A. M., Correia, J. R., De Brito, J. Post-Fire Residual Mechanical Properties of Concrete Made with Recycled Rubber Aggregate. Fire Safety Journal, 2013; 58: 49–57. doi:10.1016/j.firesaf.2013.02.002.
  25. Al-Mutairi, N., Al-Rukaibi, F., Bufarsan, A. Effect of Microsilica Addition on Compressive Strength of Rubberized Concrete at Elevated Temperatures. Journal of Material Cycles and Waste Management, 2010; 12 (1): 41–49. doi:10.1007/s10163-009-0243-7.
  26. Mousa, M. I. Effect of Elevated Temperature on the Properties of Silica Fume and Recycled Rubber-Filled High Strength Concretes (RHSC). HBRC Journal, 2017; 13 (1): 1–7. doi:10.1016/j.hbrcj.2015.03.002.
  27. Nematzadeh, M., Arjomandi, A., Fakoor, M., Aminian, A., Khorshidi-Mianaei, A. Pre-and Post-Heating Bar-Concrete Bond Behavior of CFRP-Wrapped Concrete Containing Polymeric Aggregates and Steel Fibers: Experimental and Theoretical Study. Engineering Structures, 2024; 321. doi:10.1016/j.engstruct.2024.118929.
  28. Nematzadeh, M., Hosseini, S. A., Ozbakkaloglu, T. The Combined Effect of Crumb Rubber Aggregates and Steel Fibers on Shear Behavior of GFRP Bar-Reinforced High-Strength Concrete Beams. Journal of Building Engineering, 2021; 44. doi:10.1016/j.jobe.2021.102981.
  29. American Concrete Institute (ACI). ACI 216R-89: Guide for determining the fire endurance of concrete elements. Farmington Hills (MI): ACI; 1989.
  30. American Society of Civil Engineers (ASCE). Structural fire protection. Reston (VA): ASCE; 1992. doi:10.1061/9780872628885.
  31. European Committee for Standardization (CEN). EN 1994-1-2: Design of composite steel and concrete structures – Part 1-2: General rules for structural fire design. Brussels (BE): CEN; 2004.
  32. European Committee for Standardization (CEN). EN 1992-1-2: Design of concrete structures – Part 1-2: General rules – Structural fire design. Brussels (BE): CEN; 2004.
  33. Comité Euro-International du Béton (CEB). Fire design of concrete structures – in accordance with CEB/FIP Model Code 90. Lausanne (CH): CEB; 1991.
  34. ASTM International. ASTM C150-07: Standard specification for Portland cement. West Conshohocken (PA): ASTM International; 2012. doi:10.1520/C0150-07.
  35. ASTM International. ASTM C33/C33M-16: Standard specification for concrete aggregates. West Conshohocken (PA): ASTM International; 2016. doi:10.1520/C0033_C0033M-16.
  36. ASTM International. ASTM C128-12: Standard test method for density, relative density (specific gravity), and absorption of fine aggregate. West Conshohocken (PA): ASTM International; 2015. doi:10.1520/C0128-07A.
  37. American Concrete Institute (ACI). ACI 211.1-91: Standard practice for selecting proportions for normal, heavyweight, and mass concrete. Farmington Hills (MI): ACI; 2008.
  38. ASTM International. ASTM C143/C143M-10a: Standard test method for slump of hydraulic-cement concrete. West Conshohocken (PA): ASTM International; 2012. doi:10.1520/C0143_C0143M-10A.
  39. ASTM International. ASTM C192/C192M-14: Standard practice for making and curing concrete test specimens in the laboratory. West Conshohocken (PA): ASTM International; 2015. doi:10.1520/C0192_C0192M-14.
  40. International Organization for Standardization (ISO). ISO 834-1:1999: Fire resistance tests – Elements of building construction – Part 1: General requirements. Geneva (CH): ISO; 1999.
  41. Manzoor, T., Bhat, J. A., Shah, A. H. Performance of Geopolymer Concrete at Elevated Temperature − A Critical Review. Construction and Building Materials, 2024; 420. doi:10.1016/j.conbuildmat.2024.135578.
  42. Babalola, O. E., Awoyera, P. O., Le, D. H., Bendezú Romero, L. M. A Review of Residual Strength Properties of Normal and High Strength Concrete Exposed to Elevated Temperatures: Impact of Materials Modification on Behaviour of Concrete Composite. Construction and Building Materials, 2021; 296. doi:10.1016/j.conbuildmat.2021.123448.
  43. ASTM International. ASTM C39/C39M-14: Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken (PA): ASTM International; 2014. doi:10.1520/C0039_C0039M-14.
  44. ASTM International. ASTM C496-96: Standard test method for splitting tensile strength of cylindrical concrete specimens. West Conshohocken (PA): ASTM International; 2017. doi:10.1520/C0496-96.
  45. ASTM International. ASTM C469/C469M-10: Standard test method for static modulus of elasticity and Poisson's ratio of concrete in compression. West Conshohocken (PA): ASTM International; 2014. doi:10.1520/C0469_C0469M-10.
  46. Tayeh, B. A., Zeyad, A. M., Agwa, I. S., Amin, M. Effect of Elevated Temperatures on Mechanical Properties of Lightweight Geopolymer Concrete. Case Studies in Construction Materials, 2021; 15. doi:10.1016/j.cscm.2021.e00673.
  47. Fernandes, B., Carré, H., Mindeguia, J. C., Perlot, C., La Borderie, C. Effect of Elevated Temperatures on Concrete Made with Recycled Concrete Aggregates - An Overview. Journal of Building Engineering, 2021; 44. doi:10.1016/j.jobe.2021.103235.
  48. Tu, W., Zhang, M. Behaviour of Alkali-Activated Concrete at Elevated Temperatures: A Critical Review. Cement and Concrete Composites, 2023; 138. doi:10.1016/j.cemconcomp.2023.104961.
  49. Gesoglu, M., Güneyisi, E., Hansu, O., Ipek, S., Asaad, D. S. Influence of Waste Rubber Utilization on the Fracture and Steel-Concrete Bond Strength Properties of Concrete. Construction and Building Materials, 2015; 101: 1113–1121. doi:10.1016/j.conbuildmat.2015.10.030.
  50. Murthy, A. R. C., Palani, G. S., Iyer, N. R. State-of-the-Art Review on Fracture Analysis of Concrete Structural Components. Sadhana - Academy Proceedings in Engineering Sciences, 2009; 34 (2): 345–367. doi:10.1007/s12046-009-0014-0.
  51. Yesilata, B., Isiker, Y., Turgut, P. Thermal Insulation Enhancement in Concretes by Adding Waste PET and Rubber Pieces. Construction and Building Materials, 2009; 23 (5): 1878–1882. doi:10.1016/j.conbuildmat.2008.09.014.
  52. Fawzy, H., Mustafa, S., Abd El Badie, A. Effect of Elevated Temperature on Concrete Containing Waste Tires Rubber. The Egyptian International Journal of Engineering Sciences and Technology, 2020; 29 (1): 1–13. doi:10.21608/eijest.2020.97315.
  53. Zheng, L., Huo, X. S., Yuan, Y. Strength, Modulus of Elasticity, and Brittleness Index of Rubberized Concrete. Journal of Materials in Civil Engineering, 2008; 20 (11): 692–699. doi:10.1061/(asce)0899-1561(2008)20:11(692).
  54. Correia, J. R., Lima, J. S., De Brito, J. Post-Fire Mechanical Performance of Concrete Made with Selected Plastic Waste Aggregates. Cement and Concrete Composites, 2014; 53: 187–199. doi:10.1016/j.cemconcomp.2014.07.004.
  55. Abdullah, W., AbdulKadir, M., Muhammad, M. Effect of High Temperature on Mechanical Properties of Rubberized Concrete Using Recycled Tire Rubber as Fine Aggregate Replacement. Engineering and Technology Journal, 2018; 36 (8A): 906–913. doi:10.30684/etj.36.8a.10.
  56. Beushausen, H., Dittmer, T. The Influence of Aggregate Type on the Strength and Elastic Modulus of High Strength Concrete. Construction and Building Materials, 2015; 74: 132–139. doi:10.1016/j.conbuildmat.2014.08.055.
  57. Georgali, B., Tsakiridis, P. E. Microstructure of Fire-Damaged Concrete. A Case Study. Cement and Concrete Composites, 2005; 27 (2): 255–259. doi:10.1016/j.cemconcomp.2004.02.022.
  58. Huang, Z., Liew, J. Y. R., Li, W. Evaluation of Compressive Behavior of Ultra-Lightweight Cement Composite after Elevated Temperature Exposure. Construction and Building Materials, 2017; 148: 579–589. doi:10.1016/j.conbuildmat.2017.04.121.
  59. Zheng, W., Luo, B., Wang, Y. Stress–Strain Relationship of Steel-Fibre Reinforced Reactive Powder Concrete at Elevated Temperatures. Materials and Structures/Materiaux et Constructions, 2015; 48 (7): 2299–2314. doi:10.1617/s11527-014-0312-9.
  60. Akbarzadeh Bengar, H., Shahmansouri, A. A., Akkas Zangebari Sabet, N., Kabirifar, K., W.Y. Tam, V. Impact of Elevated Temperatures on the Structural Performance of Recycled Rubber Concrete: Experimental and Mathematical Modeling. Construction and Building Materials, 2020; 255. doi:10.1016/j.conbuildmat.2020.119374.
  61. Chen, G. M., He, Y. H., Yang, H., Chen, J. F., Guo, Y. C. Compressive Behavior of Steel Fiber Reinforced Recycled Aggregate Concrete after Exposure to Elevated Temperatures. Construction and Building Materials, 2014; 71: 1–15. doi:10.1016/j.conbuildmat.2014.08.012.
  62. Sheikh, S., Uzumeri, S. M. Analytical Model for Concrete Confinement in Tied Columns. Journal of the Structural Division, 1982; 108 (ST12): 2703–2722. doi:10.1061/jsdeag.0006100.
  63. Frangou, M., Pilakoutas, K., Dritsos, S. Structural Repair/Strengthening of RC Columns. Construction and Building Materials, 1995; 9 (5): 259–266. doi:10.1016/0950-0618(95)00013-6.
  64. Tasdemir, M. A., Tasdemir, C., Akyüz, S., Jefferson, A. D., Lydon, F. D., Barr, B. I. G. Evaluation of Strains at Peak Stresses in Concrete: A Three-Phase Composite Model Approach. Cement and Concrete Composites, 1998; 20 (4): 301–318. doi:10.1016/S0958-9465(98)00012-2.
  65. Nataraja, M. C., Dhang, N., Gupta, A. P. Stress-Strain Curves for Steel-Fiber Reinforced Concrete under Compression. Cement and Concrete Composites, 1999; 21 (5–6): 383–390. doi:10.1016/S0958-9465(99)00021-9.
  66. Nematzadeh, M., Salari, A., Ghadami, J., Naghipour, M. Stress-Strain Behavior of Freshly Compressed Concrete under Axial Compression with a Practical Equation. Construction and Building Materials, 2016; 115: 402–423. doi:10.1016/j.conbuildmat.2016.04.045.