Experimental Evaluation of Micropile Bearing Capacity and Soil Interaction in Liquefiable Sands Using 1g Shaking Table Tests

Document Type : Original Article

Authors

1 Department of Civil Engineering, University of Shahid Rajaee, Tehran, Iran

2 Department of Civil Engineering, University of Technology Babol Noshirvani, Babol, Iran

3 Department of Civil Engineering, University of Islamic Azad, Tehran, Iran

4 Department of Civil Engineering, University of Gonbad Kavous, Golestan, Iran

Abstract

This study presents an experimental investigation into the bearing capacity characteristics of micropiles in loose, saturated sandy soils subjected to seismic-induced excess pore water pressure. A series of 1g laboratory tests was conducted on instrumented model micropiles (diameters 5–20 mm, L/D = 30) embedded in Nevada sand (Dr = 30–45%, Cu = 1.8, Gs = 2.65) under varying levels of induced pore pressure (ru = Δu/σ'₀ = 0.2–1.0). The experimental setup incorporated a laminar shear box equipped with pore pressure transducers, LVDTs, and load cells to systematically evaluate the evolution of micropile bearing capacity during pore pressure generation and dissipation phases. Key findings reveal that micropile bearing capacity exhibits a nonlinear reduction with increasing pore pressure ratio, with approximately 60% of initial capacity retained even at ru ≈ 1.0. Three distinct failure modes were identified: (1) shaft resistance-dominated failure at low ru values (ru < 0.5), (2) mixed shaft-toe failure at intermediate ru levels (0.5 ≤ ru ≤ 0.8), and (3) toe-bearing dominated failure under full liquefaction conditions (ru > 0.8). A new bearing capacity reduction factor (Ψ) is proposed to account for pore pressure effects, expressed as a function of relative density, pile slenderness ratio, and normalized excess pore pressure. The study provides quantitative relationships between pore pressure development and bearing capacity degradation, offering practical design equations for seismic micropile design in liquefiable soils. Results demonstrate the importance of considering partial drainage conditions and post-liquefaction strength regain in capacity calculations, challenging conventional fully-drained or fully-undrained design approaches.

Keywords

Main Subjects


  1. Kawakami, F., Asada, A. Damage to the ground and earth structures by the Niigata earthquake of June 16, 1964. Soils and Foundations, 1966; 6: 14-30. doi:10.3208/sandf1960.6.14.
  2. Kishida, H. Damage to reinforced concrete buildings in Niigata city with special reference to foundation engineering. Soils and Foundations, 1966; 6: 71-88. doi:10.3208/sandf1960.6.71.
  3. Ohsaki, Y. Niigata earthquakes, 1964 building damage and soil condition. Soils and Foundations, 1966; 6: 14-37. doi:10.3208/sandf1960.6.2_14.
  4. Yoshimi, Y., Tokimatsu, K. Settlement of buildings on saturated sand during earthquakes. Soils and Foundations, 1977; 17: 23-38. doi:10.3208/sandf1972.17.23.
  5. Nagase, H., Ishihara, K. Liquefaction-induced compaction and settlement of sand during earthquakes. Soils and Foundations, 1988; 28: 65-76. doi:10.3208/sandf1972.28.65.
  6. Seed, H. B., Idriss, I. M. Analysis of soil liquefaction: Niigata earthquake. Journal of the Soil Mechanics and Foundations Division, 1967; 93: 83-108. doi:10.1061/JSFEAQ.0000981.
  7. Acacio, A. A., Kobayashi, Y., Towhata, I., Bautista, R., Ishihara, K. Subsidence of building foundation resting upon liquefied subsoil: case studies and assessment. Soils and Foundations, 2001; 41: 111-128. doi:10.3208/sandf.41.6_111.
  8. Ishihara, K., Acacio, A. A., Towhata, I. Liquefaction-induced ground damage in Dagupan in the July 16, 1990 Luzon earthquake. Soils and Foundations, 1993; 33: 133-154. doi:10.3208/sandf1972.33.133.
  9. Tokimatsu, K., Kojima, H., Kuwayama, S., Abe, A., Midorikawa, S. Liquefaction-induced damage to buildings in 1990 Luzon earthquake. Journal of Geotechnical Engineering, 1994; 120: 290-307. doi:10.1061/(ASCE)0733-9410(1994)120:2(290).
  10. Yasui, M. Settlement and inclination of reinforced concrete buildings in Dagupan City due to liquefaction during the 1990 Philippine earthquake. In: The 10th World Conference on Earthquake Engineering; 1992 Jul 19-24; Madrid, Spain. p. 147-152.
  11. Bray, J. D., Sancio, R. B., Durgunoglu, T., Onalp, A., Youd, T. L., Stewart, J. P., Seed, R. B., Cetin, O. K., Bol, E., Baturay, M. B. Subsurface characterization at ground failure sites in Adapazari, Turkey. Journal of geotechnical and geoenvironmental engineering, 2004; 130: 673-685. doi:10.1061/(ASCE)1090-0241(2004)130:7(673).
  12. Sancio, R., Bray, J. D., Durgunoglu, T., Onalp, A. Performance of buildings over liquefiable ground in Adapazari, Turkey. In: The 13th World Conference on Earthquake Engineering; 2004 Aug 1-6; Vancouver, Canada. p. 1-15.
  13. Yoshida, N., Tokimatsu, K., Yasuda, S., Kokusho, T., Okimura, T. Geotechnical aspects of damage in Adapazari city during 1999 Kocaeli, Turkey earthquake. Soils and Foundations, 2001; 41: 25-45. doi:10.3208/sandf.41.4_25.
  14. Coelho, P., Haigh, S., Madabhushi, S. Centrifuge modelling of liquefaction of saturated sand under cyclic loading. In: Proceedings of the international conference on cyclic behaviour of soils and liquefaction phenomena; 2004 Mar 31-Apr 2; Bochum, Germany. p. 349-354.
  15. Coelho, P., Haigh, S. K., Madabhushi, S. G., O’Brien, T. Centrifuge modeling of the use of densification as a liquefaction resistance measure for bridge foundations. In: The 13th World Conference on Earthquake Engineering; 2004 Aug 1–6; Vancouver, Canada. p. 210-225.
  16. Dashti, S., Bray, J. D., Pestana, J. M., Riemer, M., Wilson, D. Mechanisms of seismically induced settlement of buildings with shallow foundations on liquefiable soil. Journal of geotechnical and geoenvironmental engineering, 2010; 136: 151-164. doi:10.1061/(ASCE)GT.1943-5606.0000179.
  17. Dashti, S., Bray, J. D., Pestana, J. M., Riemer, M., Wilson, D. Centrifuge testing to evaluate and mitigate liquefaction-induced building settlement mechanisms. Journal of geotechnical and geoenvironmental engineering, 2010; 136: 918-929. doi:10.1061/(ASCE)GT.1943-5606.0000306.
  18. Dobry, R., Liu, L. Centrifuge modeling of soil liquefaction. In: The 10th World Conference on Earthquake Engineering; 1992 Jul 19-24; Madrid, Spain. p. 6801-6809.
  19. Liu, L. Centrifuge earthquake modelling of liquefaction and its effect on shallow foundations, (PhD Thesis). Troy (NY): Rensselaer Polytechnic Institute; 1992.
  20. Liu, L., Dobry, R. Seismic response of shallow foundation on liquefiable sand. Journal of geotechnical and geoenvironmental engineering, 1997; 123: 557-567. doi:10.1061/(ASCE)1090-0241(1997)123:6(557).
  21. Liu, L., Dobry, R. Centrifuge study of shallow foundation on saturated sand during earthquakes. In: Proceedings from the fourth Japan-US workshop on earthquake resistant design of lifeline facilities and countermeasures for soil liquefaction; 1992 May 27-29; Honolulu, United States. p. 493-508.
  22. Ueng, T., Wu, C., Cheng, H., Chen, C. Settlements of saturated clean sand deposits in shaking table tests. Soil Dynamics and Earthquake Engineering, 2010; 30: 50-60. doi:10.1016/j.soildyn.2009.09.006.
  23. Adalier, K., Elgamal, A. Mitigation of liquefaction and associated ground deformations by stone columns. Engineering Geology, 2004; 72: 275-291. doi:10.1016/j.enggeo.2003.11.001.
  24. Adalier, K., Elgamal, A., Meneses, J., Baez, J. Stone columns as liquefaction countermeasure in non-plastic silty soils. Soil Dynamics and Earthquake Engineering, 2003; 23: 571-584. doi:10.1016/S0267-7261(03)00070-8.
  25. Asgari, A., Oliaei, M., Bagheri, M. Numerical simulation of improvement of a liquefiable soil layer using stone column and pile-pinning techniques. Soil Dynamics and Earthquake Engineering, 2013; 51: 77-96. doi:10.1016/j.soildyn.2013.04.006.
  26. Burcharth, H. F. Breakwaters with vertical and inclined concrete walls: Report of working group 28 of the maritime navigation commission. ed. Brussels (BE): PIANC General Secretariat; 2003.
  27. Lu, J., Elgamal, A., Yan, L., Law, K. H., Conte, J. P. Large-scale numerical modeling in geotechnical earthquake engineering. International Journal of Geomechanics, 2011; 11: 490-503. doi:10.1061/(ASCE)GM.1943-5622.0000042.
  28. Kuwano, J., Takahashi, A., Nakada, T., Yano, A., Kido, M. Centrifuge model loading tests on slope stabilizing micro-piles. In: Advances in geotechnical engineering: The Skempton conference: Proceedings of a three day conference on advances in geotechnical engineering; 2004 Mar 29-31; London, UK. p. 1080-1089.
  29. Nusier, O., Alawneh, A., Rabadi, R. Micropiles reinforcement for expansive soils: large-scale experimental investigation. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2007; 11: 55-60. doi:10.1680/grim.2007.11.2.55.
  30. Nusier, O. K., Alawneh, A. S., Abdullatit, B. Small-scale micropiles to control heave on expansive clays. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2009; 162: 27-35. doi:10.1680/grim.2009.162.1.27.
  31. Srinivasa Murthy, B., Sivakumar Babu, G., Srinivas, A. Analysis of bearing capacity improvement using micropiles. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2002; 6: 121-128. doi:10.1680/grim.2002.6.3.121.
  32. Asgari, A., Bagheri, M., Hadizadeh, M. Advanced seismic analysis of soil-foundation-structure interaction for shallow and pile foundations in saturated and dry deposits: Insights from 3D parallel finite element modeling. Structures, 2024; 69: 107503. doi:10.1016/j.istruc.2024.107503.
  33. Wang, M., Han, J. Numerical Modelling for Ground Improvement of Batter Micropiles on Liquefiable Soils. In: A. J. Puppala, J. Huang, J. Han, L. R. Hoyos editors. Ground Improvement and Geosynthetics. 2012. p. 212-219. doi:10.1061/41108(381)28.
  34. Ghassemi, S., Ekraminia, S. S., Hajialilue-Bonab, M., Tohidvand, H. R., Azarafza, M., Derakhshani, R. Innovative insights into micropile seismic response: Shaking table tests reveal critical dependencies and liquefaction mitigation. Bulletin of Engineering Geology and the Environment, 2025; 84: 206. doi:10.1007/s10064-025-04225-y.
  35. Jalilian, H., Yin, J. H., Panah, A. K. Shaking Table Investigation of Seismic Performance of Micropiles. In: Proceedings of GeoShanghai 2018 International Conference: Advances in Soil Dynamics and Foundation Engineering; 2018; Singapore. p. 138-147. doi:10.1007/978-981-13-0131-5_16.
  36. Shahrour, I., Juran, I. Seismic behaviour of micropile systems. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2004; 8: 109-120.
  37. Capatti, M. C., Dezi, F., Carbonari, S., Gara, F. Full-scale experimental assessment of the dynamic horizontal behavior of micropiles in alluvial silty soils. Soil Dynamics and Earthquake Engineering, 2018; 113: 58-74. doi:10.1016/j.soildyn.2018.05.029.
  38. Capatti, M. C., Dezi, F., Carbonari, S., Gara, F. Dynamic performance of a full-scale micropile group: Relevance of nonlinear behaviour of the soil adjacent to micropiles. Soil Dynamics and Earthquake Engineering, 2020; 128: 105858. doi:10.1016/j.soildyn.2019.105858.
  39. Jalilian Mashhoud, H., Yin, J.-H., Komak Panah, A., Leung, Y. F. Shaking table test study on dynamic behavior of micropiles in loose sand. Soil Dynamics and Earthquake Engineering, 2018; 110: 53-69. doi:10.1016/j.soildyn.2018.03.008.
  40. Alnuaim, A. M., El Naggar, M. H., El Naggar, H. Numerical investigation of the performance of micropiled rafts in sand. Computers and Geotechnics, 2016; 77: 91-105. doi:10.1016/j.compgeo.2016.04.002.
  41. Asgari, A., Arjomand, M. A., Bagheri, M., Ebadi-Jamkhaneh, M., Mostafaei, Y. Assessment of Experimental Data and Analytical Method of Helical Pile Capacity Under Tension and Compressive Loading in Dense Sand. Buildings, 2025; 15: 2683. doi:10.3390/buildings15152683.
  42. Barari, A., Bagheri, M., Rouainia, M., Ibsen, L. B. Deformation mechanisms for offshore monopile foundations accounting for cyclic mobility effects. Soil Dynamics and Earthquake Engineering, 2017; 97: 439-453. doi:10.1016/j.soildyn.2017.03.008.
  43. Vargas, W. Ring shear tests on large deformation of sand, (PhD Thesis). Tokyo (JP): The University of Tokyo; 1998.
  44. Iai, S. Similitude for shaking table tests on soil-structure-fluid model in 1g gravitational field. Soils and Foundations, 1989; 29: 105-118. doi:10.3208/sandf1972.29.105.
  45. Kagawa, T. On the similitude in model vibration tests of earth-structures. Proceedings of the Japan Society of Civil Engineers, 1978; 1978: 69-77. doi:10.2208/jscej1969.1978.275_69.
  46. Kokusho, T., Iwatate, T. Scaled model tests and numerical analyses on nonlinear dynamic response of soft grounds. Proceedings of the Japan Society of Civil Engineers, 1979; 1979: 57-67. doi:10.2208/jscej1969.1979.285_57.
  47. Federal Highway Administration (FHWA). FHWA-SA-97-070: FHWA, Micropile design and construction guidlines. United States Department of Transportation Federal Highway Administration: Washington (DC); 2003.
  48. Asgari, A., Ranjbar, F., Bagheri, M. Seismic resilience of pile groups to lateral spreading in liquefiable soils: 3D parallel finite element modeling. Structures, 2025; 74: 108578. doi:10.1016/j.istruc.2025.108578.
  49. Asgari, A., Golshani, A., Bagheri, M. Numerical evaluation of seismic response of shallow foundation on loose silt and silty sand. Journal of Earth System Science, 2014; 123: 365-379. doi:10.1007/s12040-013-0393-9.
  50. Bagheri, M., Jamkhaneh, M. E., Samali, B. Effect of seismic soil–pile–structure interaction on mid-and high-rise steel buildings resting on a group of pile foundations. International Journal of Geomechanics, 2018; 18: 04018103. doi:10.1061/(ASCE)GM.1943-5622.0001222.
  51. Ibsen, L. B., Asgari, A., Bagheri, M., Barari, A. Response of monopiles in sand subjected to one-way and transient cyclic lateral loading. In: R. Y. Linag, J. Qian, J. Tao editors. Advances in Soil Dynamics and Foundation Engineering. 2014. p. 312-322. doi:10.1061/9780784413425.032.
  52. Jafarian, Y., Bagheri, M., khalili, M. Earthquake-Induced Deformation of Breakwater on Liquefiable Soil with and Without Remediation: Case Study of Iran LNG Port. In: New Developments in Materials for Infrastructure Sustainability and the Contemporary Issues in Geo-environmental Engineering; 2019; Cham, Switzerland. p. 23-37. doi:10.1007/978-3-319-95774-6_3.
  53. Patrício, J. D., Gusmão, A. D., Ferreira, S. R., Silva, F. A., Kafshgarkolaei, H. J., Azevedo, A. C., Delgado, J. M. Settlement analysis of concrete-walled buildings using soil–structure interactions and finite element modeling. Buildings, 2024; 14: 746. doi:10.3390/buildings14030746.
  54. Shooshpasha, I., Bagheri, M. The effects of surcharge on liquefaction resistance of silty sand. Arabian Journal of Geosciences, 2014; 7: 1029-1035. doi:10.1007/s12517-012-0737-9.
  55. Asgari, A., Ahmadtabar Sorkhi, S. F. Wind turbine performance under multi-hazard loads: Wave, wind, and earthquake effects on liquefiable soil. Results in Engineering, 2025; 26: 104647. doi:10.1016/j.rineng.2025.104647.
  56. Orr, T. L., Farrell, E. R. Geotechnical design to Eurocode 7. 1st ed. Berlin (DE): Springer Science & Business Media; 2012. doi:10.1007/978-1-4471-0803-0.
  57. Jahangiri, V., Akbarzadeh, M. R., Shahamat, S. A., Asgari, A., Naeim, B., Ranjbar, F. Machine learning-based prediction of seismic response of steel diagrid systems. Structures, 2025; 80: 109791. doi:10.1016/j.istruc.2025.109791.
Volume 1, Issue 4
September 2025
Pages 27-39
  • Receive Date: 24 April 2025
  • Revise Date: 13 May 2025
  • Accept Date: 14 May 2025
  • First Publish Date: 21 May 2025