Assessment of the Impact of Land Use/Land Cover Changes in the Hamoun Wetland on Land Surface Temperature Using Satellite Imagery

Document Type : Original Article

Authors

1 Department of Arid and Mountainous Regions Reclamation, Faculty of Natural Resources, University of Tehran, Iran

2 Department of Desert Studies, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

Abstract

The Hamoun wetland, situated in southeastern Iran near the Afghanistan border, is a sensitive ecological and socio-economic area that has undergone significant land use and environmental changes over recent decades. This study applied the supervised CART classification method to identify Land Use/Land Cover (LULC) changes over 40 years  (corresponding to 1990, 2000, 2010, and 2020) in the Hamoun region. Surface temperature data were analyzed regarding land use changes, and the Palmer Drought Severity Index (PDSI) was utilized to assess drought trends during this time. The results indicate a significant decline in water bodies, agricultural lands, and reed beds. Specifically, the water bodies decreased from 11.25% in 1990 to 2.47% in 2020, agricultural lands from 8.56% to 3.53%, and reed beds from 4.64% to 0.38%. Conversely, low-vegetation areas, barren lands, and urban areas expanded, with barren lands increasing by 14.05%. The overall classification accuracy for the LULC maps was approximately 96%, 96%, 95%, and 98% for the respective years, and the Kappa coefficients were 0.97, 0.97, 0.96, and 0.98, indicating high classification accuracy. Temperature trends declined during the study period, primarily due to severe droughts. The findings highlight a significant relationship between land use changes and surface temperature variations. This research provides valuable insights for policymakers and urban planners, supporting sustainable LULC strategies at the local level.

Keywords

Main Subjects


  1. FAO/UNEP. Terminology for integrated resources planning and management. Rome (Italy): Food and Agriculture Organization/United Nations Environment Programme; 1999.
  2. Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., Ni, F. Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly. Science, 2009; 326 (5957): 1256–1260. doi:10.1126/science.1177303.
  3. Ramachandra, T. V., Aithal, B. H., D, D. S. Land Surface Temperature Analysis in an Urbanising Landscape through Multi- Resolution Data. Research & Reviews: Journal of Space Science & Technology, 2012; 1 (1): 1–10.
  4. Sahoo, S., Dhar, A., Kar, A. Environmental Vulnerability Assessment Using Grey Analytic Hierarchy Process Based Model. Environmental Impact Assessment Review, 2016; 56: 145–154. doi:10.1016/j.eiar.2015.10.002.
  5. Guo, Z., Wang, S. D., Cheng, M. M., Shu, Y. Assess the Effect of Different Degrees of Urbanization on Land Surface Temperature Using Remote Sensing Images. Procedia Environmental Sciences, 2012; 13: 935–942. doi:10.1016/j.proenv.2012.01.087.
  6. Kidder, S. Q., Wu, H. T. A Multispectral Study of the St. Louis Area under Snow-Covered Conditions Using NOAA-7 AVHRR Data. Remote Sensing of Environment, 1987; 22 (2): 159–172. doi:10.1016/0034-4257(87)90056-3.
  7. Balling, R. C., Brazel, S. W. High-Resolution Surface Temperature Patterns in a Complex Urban Terrain. Photogrammetric Engineering & Remote Sensing, 1988; 54 (9): 1289–1293.
  8. Srivastava, P. K., Majumdar, T. J., Bhattacharya, A. K. Study of Land Surface Temperature and Spectral Emissivity Using Multi-Sensor Satellite Data. Journal of Earth System Science, 2010; 119 (1): 67–74. doi:10.1007/s12040-010-0002-0.
  9. Zhang, F., Tiyip, T., Kung, H., Johnson, V. C., Maimaitiyiming, M., Zhou, M., Wang, J. Dynamics of Land Surface Temperature (LST) in Response to Land Use and Land Cover (LULC) Changes in the Weigan and Kuqa River Oasis, Xinjiang, China. Arabian Journal of Geosciences, 2016; 9 (7). doi:10.1007/s12517-016-2521-8.
  10. Zhao, Q., Haseeb, M., Wang, X., Zheng, X., Tahir, Z., Ghafoor, S., Mubbin, M., Kumar, R. P., Purohit, S., Soufan, W., Almutairi, K. F. Evaluation of Land Use Land Cover Changes in Response to Land Surface Temperature With Satellite Indices and Remote Sensing Data. Rangeland Ecology and Management, 2024; 96: 183–196. doi:10.1016/j.rama.2024.07.003.
  11. Saleem, H., Ahmed, R., Mushtaq, S., Saleem, S., Rajesh, M. Remote Sensing-Based Analysis of Land Use, Land Cover, and Land Surface Temperature Changes in Jammu District, India. International Journal of River Basin Management, 2024; 1–16. doi:10.1080/15715124.2024.2327493.
  12. Hussain, S., Karuppannan, S. Land Use/Land Cover Changes and Their Impact on Land Surface Temperature Using Remote Sensing Technique in District Khanewal, Punjab Pakistan. Geology, Ecology, and Landscapes, 2023; 7 (1): 46–58. doi:10.1080/24749508.2021.1923272.
  13. Al Rakib, A., Akter, K. S., Rahman, M. N., Arpi, S., Kafy, A. A. Analyzing the pattern of land use land cover change and its impact on land surface temperature: a remote sensing approach in Mymensingh, Bangladesh. In: Proceedings of the 1st International Student Research Conference - 2020; 2020 Apr; Dhaka, Bangladesh.
  14. Gohain, K. J., Mohammad, P., Goswami, A. Assessing the impact of land use land cover changes on land surface temperature over Pune city, India. Quaternary International, 2021; 575: 259–269. doi:10.1016/j.quaint.2020.04.052.
  15. Tan, J., Yu, D., Li, Q., Tan, X., Zhou, W. Spatial Relationship between Land-Use/Land-Cover Change and Land Surface Temperature in the Dongting Lake Area, China. Scientific Reports, 2020; 10 (1): 9245. doi:10.1038/s41598-020-66168-6.
  16. Parastatidis, D., Mitraka, Z., Chrysoulakis, N., Abrams, M. Online Global Land Surface Temperature Estimation from Landsat. Remote Sensing, 2017; 9 (12): 1208. doi:10.3390/rs9121208.
  17. Dissanayake, D., Morimoto, T., Ranagalage, M. Accessing the Soil Erosion Rate Based on RUSLE Model for Sustainable Land Use Management: A Case Study of the Kotmale Watershed, Sri Lanka. Modeling Earth Systems and Environment, 2019; 5 (1): 291–306. doi:10.1007/s40808-018-0534-x.
  18. Jiang, J., Tian, G. Analysis of the Impact of Land Use/Land Cover Change on Land Surface Temperature with Remote Sensing. Procedia Environmental Sciences, 2010; 2: 571–575. doi:10.1016/j.proenv.2010.10.062.
  19. Yue, W., Xu, J., Tan, W., Xu, L. The Relationship between Land Surface Temperature and NDVI with Remote Sensing: Application to Shanghai Landsat 7 ETM+ Data. International Journal of Remote Sensing, 2007; 28 (15): 3205–3226. doi:10.1080/01431160500306906.
  20. Nunes, M. C. S., Vasconcelos, M. J., Pereira, J. M. C., Dasgupta, N., Alldredge, R. J., Rego, F. C. Land Cover Type and Fire in Portugal: Do Fires Burn Land Cover Selectively? Landscape Ecology, 2005; 20 (6): 661–673. doi:10.1007/s10980-005-0070-8.
  21. Huang, S., Siegert, F. Land Cover Classification Optimized to Detect Areas at Risk of Desertification in North China Based on SPOT VEGETATION Imagery. Journal of Arid Environments, 2006; 67 (2): 308–327. doi:10.1016/j.jaridenv.2006.02.016.
  22. Dehghani, T., Koolivand, I., Mehdizadeh, S., Ahmadpari, H., Zolfagharan, A., Mohamadi, E. Monitoring land-use changes using remote sensing, ENVI and ArcGIS software in Hamoun Wetlands. In: Proceedings of the 3rd International and 6th National Conference on Conservation of Natural Resources and Environment; 2022 Sep 12–13; Ardabil, Iran.
  23. Kharazmi, R., Abdollahi, A. A., Rahdari, M. R., Karkon varnosfaderani, M. Monitoring Land Use Change and its Impacts on Land Degradation and Desertification Trend Using Landsat Satellite Images (Case study: East of Iran, Hamoon Wetland). Journal of Arid Regions Geographic Studies, 2022; 7(25): 64-75.
  24. Eskandari Damaneh, H., Zehtabian, G. R., Khosravi, H., Azareh, A. Investigation and Analysis of Temporal and Spatial Relationship between Meteorological and Hydrological Drought in Tehran Province. Scientific- Research Quarterly of Geographical Data (SEPEHR), 2016; 24(96): 113-120. doi:10.22131/sepehr.2016.18947.
  25. Biro, K., Pradhan, B., Buchroithner, M., Makeschin, F. Land Use/Land Cover Change Analysis And Its Impact On Soil Properties In The Northern Part Of Gadarif Region, Sudan. Land Degradation and Development, 2013; 24 (1): 90–102. doi:10.1002/ldr.1116.
  26. Yousefi J. Image binarization using the Otsu thresholding algorithm. Ontario (Canada): University of Guelph; 2011.
  27. Tucker, C. J., Justice, C. O., Prince, S. D. Monitoring the Grasslands of the Sahel 1984-1985. International Journal of Remote Sensing, 1986; 7 (11): 1984–1985. doi:10.1080/01431168608948954.
  28. Gao, B. C. NDWI - A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sensing of Environment, 1996; 58 (3): 257–266. doi:10.1016/S0034-4257(96)00067-3.
  29. Kafy, A. A., Naim, M. N. H., Subramanyam, G., Faisal, A. Al, Ahmed, N. U., Rakib, A. Al, Kona, M. A., Sattar, G. S. Cellular Automata Approach in Dynamic Modelling of Land Cover Changes Using RapidEye Images in Dhaka, Bangladesh. Environmental Challenges, 2021; 4: 100084. doi:10.1016/j.envc.2021.100084.
  30. Salomonson, V. V, Guenther, B., Masuoka, E. A summary of the status of the EOS Terra Mission Moderate Resolution Imaging Spectroradiometer (MODIS) and attendant data product development after one year of on-orbit performance. In: Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS); 2001 Jul 9–13; Sydney, Australia. doi:10.1109/igarss.2001.976790.
  31. Mika, J., Horváth, S., Makra, L., Dunkel, Z. The Palmer Drought Severity Index (PDSI) as an Indicator of Soil Moisture. Physics and Chemistry of the Earth, 2005; 30 (1-3 SPEC. ISS.): 223–230. doi:10.1016/j.pce.2004.08.036.
  32. Zhai, J., Su, B., Krysanova, V., Vetter, T., Gao, C., Jiang, T. Spatial Variation and Trends in PDSI and SPI Indices and Their Relation to Streamflow in 10 Large Regions of China. Journal of Climate, 2010; 23 (3): 649–663. doi:10.1175/2009JCLI2968.1.
  33. Barichivich, J., Osborn, T., Harris, I., van der Schrier, G., & Jones, P. (2021). Monitoring global drought using the self-calibrating Palmer Drought Severity Index [in" State of the Climate in 2020" eds. Dunn RJH, Aldred F, Gobron N, Miller JB & Willett KM]. Bulletin of the American Meteorological Society, 102(8), S68-S70. doi: 1175/BAMS-D-21-0098.1.
  34. Zheng, Z., Jin, L., Li, J., Chen, J., Zhang, X., Wang, Z. Moisture Variation Inferred from Tree Rings in North Central China and Its Links with the Remote Oceans. Scientific Reports, 2021; 11 (1): 16463. doi:10.1038/s41598-021-93841-1.
  35. Dhar, R. B., Chakraborty, S., Chattopadhyay, R., Sikdar, P. K. Impact of Land-Use/Land-Cover Change on Land Surface Temperature Using Satellite Data: A Case Study of Rajarhat Block, North 24-Parganas District, West Bengal. Journal of the Indian Society of Remote Sensing, 2019; 47 (2): 331–348. doi:10.1007/s12524-019-00939-1.
  36. Miri, A., Ahmadi, H., Ekhtesasi, M. R., Panjehkeh, N., Ghanbari, A. Environmental and Socio-Economic Impacts of Dust Storms in Sistan Region, Iran. International Journal of Environmental Studies, 2009; 66 (3): 343–355. doi:10.1080/00207230902720170.
  37. Maleki, S., Koupaei, S. S., Soffianian, A., Saatchi, S., Pourmanafi, S., Rahdari, V. Human and Climate Effects on the Hamoun Wetlands. Weather, Climate, and Society, 2019; 11 (3): 609–622. doi:10.1175/WCAS-D-18-0070.1.
  38. Karami, R., Salman Mahini, A., Ghobani Nasrabadi, H., Khalil Evaluation of Climate Change in the Hamun International Wetland Basin Using the LARS-WG6 Model. Natural Environmental Hazards, 11 (31): 107–122.
  39. Haji Hosseini, H., Shigan, M., Morid, V., Alireza Study of Land Use Changes Downstream of the Kajaki Dam in the Helmand River Basin, Afghanistan, Using the Maximum Likelihood Classifier. Decision Trees, and Support Vector Machines. Remote Sensing and GIS Journal of Iran, 5 (4).
  40. Sharif Nia, H., Pahlevan Sharif, S., Yaghoobzadeh, A., Yeoh, K. K., Goudarzian, A. H., Soleimani, M. A., Jamali, S. Effect of acupressure on pain in Iranian leukemia patients: A randomized controlled trial study. International Journal of Nursing Practice, 2017; 23(2): e12513. doi:10.1111/ijn.12513.
Volume 1, Issue 2
July 2025
Pages 31-42
  • Receive Date: 07 May 2025
  • Revise Date: 24 May 2025
  • Accept Date: 26 May 2025
  • First Publish Date: 17 June 2025