This study investigates the axial compressive behavior of circular concrete columns confined using three methods: steel tube confinement, FRP confinement, and hybrid FRP–steel tube confinement. Specimens were designed with similar confinement ratios to allow fair evaluation of their mechanical performance. Experimental results showed that while the type of confinement had little effect on the initial stiffness, it significantly influenced the post-peak behavior. Steel confinement offered the highest strength and ductility, while FRP confinement increased ultimate strain but failed abruptly due to brittle rupture. The hybrid system exhibited a staged failure mechanism with the improved confinement efficiency and a balance between strength and ductility. Stress–strain curves, volumetric strain trends, and tangent Poisson’s ratio analyses highlighted the superior performance of the hybrid systems. The findings suggest that hybrid FRP–steel confinement is a promising solution for enhancing both strength and deformation capacity in reinforced concrete columns, especially in seismic or high-performance structural applications.
Richart, F. E., Brandtzæg, A., Brown, R. L. A study of the failure of concrete under combined compressive stresses. Urbana (IL): University of Illinois, Engineering Experiment Station; 1928. Bulletin No.: 185.
Newman, K., Newman, J. B. Failure theories and design criteria for plain concrete. In: Structure, Solid Mechanics and Engineering Design: Proceedings of the Southampton Civil Engineering Materials Conference; 1969; Southampton, UK. p. 963–995.
Mander, J. B., Priestley, M. J. N., Park, R. Theoretical Stress‐Strain Model for Confined Concrete. Journal of Structural Engineering, 1988; 114 (8): 1804–1826. doi:10.1061/(asce)0733-9445(1988)114:8(1804).
Han, L. H., Liu, W., Yang, Y. F. Behavior of Thin Walled Steel Tube Confined Concrete Stub Columns Subjected to Axial Local Compression. Thin-Walled Structures, 2008; 46 (2): 155–164. doi:10.1016/j.tws.2007.08.029.
Liu, J., Zhang, S., Zhang, X., Guo, L. Behavior and Strength of Circular Tube Confined Reinforced-Concrete (CTRC) Columns. Journal of Constructional Steel Research, 2009; 65 (7): 1447–1458. doi:10.1016/j.jcsr.2009.03.014.
Qi, H., Guo, L., Liu, J., Gan, D., Zhang, S. Axial Load Behavior and Strength of Tubed Steel Reinforced-Concrete (SRC) Stub Columns. Thin-Walled Structures, 2011; 49 (9): 1141–1150. doi:10.1016/j.tws.2011.04.006.
Lin, S., Zhao, Y. G., He, L. Stress Paths of Confined Concrete in Axially Loaded Circular Concrete-Filled Steel Tube Stub Columns. Engineering Structures, 2018; 173: 1019–1028. doi:10.1016/j.engstruct.2018.06.112.
Xiamuxi, A., Zheng, T., Shao, J., Tan, T. Impact of Steel Tube Wall Thickness on Axial Compression Behavior of Reinforced and Recycled Aggregate Concrete-Filled Square Steel Tube Short Columns. Structures, 2024; 69: 107382. doi:10.1016/j.istruc.2024.107382.
Cao, J., Jin, M., Chen, S., Ding, Q., Liu, J., Xiong, C., Jin, Z. Effect of Confinement of Steel Tube on Durability of Concrete Pier Exposed to Partial/Full Immersion Sulfate Attack Solution. Journal of Building Engineering, 2025; 99: 111477. doi:10.1016/j.jobe.2024.111477.
Kurt, C. E. Concrete filled structural plastic columns. Journal of the Structural Division, ASCE. 1978; 104(1):55–63. doi:10.1061/jsdeag.0004849.
Harmon T, Slattery K, Ramakrishnan S. The effect of confinement stiffness on confined concrete. In: Taerwe L, editor. Proceedings of the Second International RILEM Symposium (FRPRCS-2); 1995 Aug 23–25; Ghent, Belgium. Vol. 1. p. 584–592.
Lam, L., Teng, J. G., Cheung, C. H., Xiao, Y. FRP-confined concrete under axial cyclic compression. Cement and Concrete Composites, 2006; 28(10): 949–958. doi:10.1016/j.cemconcomp.2006.07.007.
Berthet, J. F., Ferrier, E., Hamelin, P. Compressive Behavior of Concrete Externally Confined by Composite Jackets: Part B: Modeling. Construction and Building Materials, 2006; 20 (5): 338–347. doi:10.1016/j.conbuildmat.2005.01.029.
Li, G., Maricherla, D., Singh, K., Pang, S. S., John, M. Effect of Fiber Orientation on the Structural Behavior of FRP Wrapped Concrete Cylinders. Composite Structures, 2006; 74 (4): 475–483. doi:10.1016/j.compstruct.2005.05.001.
Toutanji, H., Han, M., Matthys, S. Axial load behavior of rectangular concrete columns confined with FRP composites. In: Proceedings of the 8th International Symposium on Fiber-Reinforced Polymer Reinforcement for Concrete Structures (FRPRCS-8); 2007 Jul 16–18; Patras, Greece.
Elsanadedy, H. M., Al-Salloum, Y. A., Alsayed, S. H., Iqbal, R. A. Experimental and Numerical Investigation of Size Effects in FRP-Wrapped Concrete Columns. Construction and Building Materials, 2012; 29: 56–72. doi:10.1016/j.conbuildmat.2011.10.025.
Yang, Z., He, C., Kong, Q., Yuan, C. Monitoring the Microcrack Evolution in FRP-Wrapped Concrete Using Diffuse Ultrasound. Journal of Building Engineering, 2025; 109. doi:10.1016/j.jobe.2025.113009.
Zheng, Y., Xu, F. H., Wang, D., Liang, M. Evaluating Ultimate Axial Strain Models for Concrete Square and Rectangular Columns Confined with FRP Composites. Journal of Physics: Conference Series, 2025; 3005 (1): 12008. doi:10.1088/1742-6596/3005/1/012008.
Xiao, Y., He, W., Choi, K. Confined Concrete-Filled Tubular Columns. Journal of Structural Engineering, 2005; 131 (3): 488–497. doi:10.1061/(asce)0733-9445(2005)131:3(488).
Feng, P., Cheng, S., Bai, Y., Ye, L. Mechanical Behavior of Concrete-Filled Square Steel Tube with FRP-Confined Concrete Core Subjected to Axial Compression. Composite Structures, 2015; 123: 312–324. doi:10.1016/j.compstruct.2014.12.053.
Ma, L., Zhou, C., Lee, D., Zhang, J. Prediction of Axial Compressive Capacity of CFRP-Confined Concrete-Filled Steel Tubular Short Columns Based on XGBoost Algorithm. Engineering Structures, 2022; 260: 114239. doi:10.1016/j.engstruct.2022.114239.
Liu, K. H., Xie, T. Y., Cai, Z. K., Chen, G. M., Zhao, X. Y. Data-Driven Prediction and Optimization of Axial Compressive Strength for FRP-Reinforced CFST Columns Using Synthetic Data Augmentation. Engineering Structures, 2024; 300: 117225. doi:10.1016/j.engstruct.2023.117225.
Salari, A. , & Naghipour, M. (2025). Experimental Study of Circular Concrete Column Confined with Hybrid FRP-Steel Tube, under Axial Load. Civil Engineering and Applied Solutions, 1(2), 1-13. doi: 10.22080/ceas.2025.29193.1010
MLA
Abolghasem Salari; Morteza Naghipour. "Experimental Study of Circular Concrete Column Confined with Hybrid FRP-Steel Tube, under Axial Load", Civil Engineering and Applied Solutions, 1, 2, 2025, 1-13. doi: 10.22080/ceas.2025.29193.1010
HARVARD
Salari, A., Naghipour, M. (2025). 'Experimental Study of Circular Concrete Column Confined with Hybrid FRP-Steel Tube, under Axial Load', Civil Engineering and Applied Solutions, 1(2), pp. 1-13. doi: 10.22080/ceas.2025.29193.1010
CHICAGO
A. Salari and M. Naghipour, "Experimental Study of Circular Concrete Column Confined with Hybrid FRP-Steel Tube, under Axial Load," Civil Engineering and Applied Solutions, 1 2 (2025): 1-13, doi: 10.22080/ceas.2025.29193.1010
VANCOUVER
Salari, A., Naghipour, M. Experimental Study of Circular Concrete Column Confined with Hybrid FRP-Steel Tube, under Axial Load. Civil Engineering and Applied Solutions, 2025; 1(2): 1-13. doi: 10.22080/ceas.2025.29193.1010