Life Cycle Environmental Impact of High-Strength and Lightweight Pozzolanic Concretes

Document Type : Original Article

Authors

1 Department of Civil Engineering, Iranshahr Branch, Islamic Azad University, Iranshahr, Sistan and Baluchestan, Iran

2 Industrial Minerals & Blends Laboratory, Euroquartz s.a., Hermalle-Sous-Argenteau, Belgium

Abstract

This study evaluates the environmental and economic performance of six innovative concrete mixtures using Life Cycle Assessment (LCA) and cost analysis. The concrete types incorporate various industrial and agricultural by-products, including PET waste, steel fibers, nano-silica, pumice, ceramic waste, EAF slag, asbestos cement sheets, and rice husk ash. Using the CML 2001, IMPACT 2002+, and ReCiPe methods, environmental impacts were assessed across key categories, such as global warming potential, toxicity, and resource depletion. Results indicate that conventional concrete had the lowest environmental burden overall, while PET/steel fiber concrete showed the highest impact in most categories. Sensitivity analysis identified cement as the primary contributor to environmental damage, followed by micro-silica in select mixes. The economic analysis identified conventional concrete as the most cost-effective, followed by pumice and PET/steel fiber concretes, which were 19.3% and 69.6% more expensive, respectively. Integrating environmental and cost factors revealed that, despite its relatively low cost, PET/steel fiber concrete contributed the most to CO₂ emissions. These findings support more informed material selection for sustainable construction.

Keywords

Main Subjects


  1. Vieira, T., Alves, A., de Brito, J., Correia, J. R., Silva, R. V. Durability-Related Performance of Concrete Containing Fine Recycled Aggregates from Crushed Bricks and Sanitary Ware. Materials and Design, 2016; 90: 767–776. doi:10.1016/j.matdes.2015.11.023.
  2. Meyer, C. The Greening of the Concrete Industry. Cement and Concrete Composites, 2009; 31 (8): 601–605. doi:10.1016/j.cemconcomp.2008.12.010.
  3. Ding, G. K. C. Sustainable Construction-The Role of Environmental Assessment Tools. Journal of Environmental Management, 2008; 86 (3): 451–464. doi:10.1016/j.jenvman.2006.12.025.
  4. Lee, K. M., Inaba, A. Life cycle assessment: best practices of ISO 14040 series. Suwon (KR): Center for Ecodesign and LCA (CEL), Ajou University; 2004.
  5. Klöpffer, W. Background and future prospects in life cycle assessment. Dordrecht (NL): Springer Science & Business Media; 2014. Vol. 53. doi:10.1007/978-94-017-8697-3.
  6. Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W.-P., Suh, S., Weidema, B. P., Pennington, D. W. Life Cycle Assessment: Part 1: Framework, Goal and Scope Definition, Inventory Analysis, and Applications. Environment international, 2004; 30 (5): 701–720. doi:10.1016/j.envint.2003.11.005.
  7. Bayer, C., Gamble, M., Gentry, R., Joshi, S. AIA guide to building life cycle assessment in practice. Washington (DC): The American Institute of Architects; 2010. Report No.: 16. p. 17–60.
  8. International Organization for Standardization (ISO). ISO 14044:2006: Environmental management – Life cycle assessment – Requirements and guidelines. Geneva (CH): ISO; 2006.
  9. Tafheem, Z., Khusru, S., Nasrin, S. Environmental impact of green concrete in practice. In: Proceedings of the International Conference on Mechanical Engineering and Renewable Energy; 2011 Dec 22–24; Chittagong, Bangladesh.
  10. Jahren, P., Sui, T. Concrete and sustainability. Boca Raton (FL): CRC Press; 2013. doi:10.1201/b15160.
  11. Shetty, M. S. Concrete technology: theory & practice. New Delhi (IN): S. Chand & Company Ltd.; 2005.
  12. Janamian, K., Aguiar, J. B. Concrete materials and technology: a practical guide. Boca Raton (FL): CRC Press; 2023. doi:10.1201/9781003384243.
  13. Gambhir, M. L. Concrete technology: theory and practice. New Delhi (IN): McGraw-Hill Education (India); 2013.
  14. del Rey Castillo, E., Almesfer, N., Saggi, O., Ingham, J. M. Light-Weight Concrete with Artificial Aggregate Manufactured from Plastic Waste. Construction and Building Materials, 2020; 265: 120199. doi:10.1016/j.conbuildmat.2020.120199.
  15. George GK, Revathi P. Production and utilisation of artificial coarse aggregate in concrete – a review. IOP Conference Series: Materials Science and Engineering. 2020;936(1):012035. doi:10.1088/1757-899X/936/1/012035.
  16. Tokyay, M. Cement and concrete mineral admixtures. Boca Raton (FL): CRC Press; 2016. doi:10.1201/b20093.
  17. Colangelo, F., Forcina, A., Farina, I., Petrillo, A. Life Cycle Assessment (LCA) of Different Kinds of Concrete Containing Waste for Sustainable Construction. Buildings, 2018; 8 (5): 70. doi:10.3390/buildings8050070.
  18. Demirel, S., Öz, H. Ö., Güneş, M., Çiner, F., Adın, S. Life-Cycle Assessment (LCA) Aspects and Strength Characteristics of Self-Compacting Mortars (SCMs) Incorporating Fly Ash and Waste Glass PET. International Journal of Life Cycle Assessment, 2019; 24 (6): 1139–1153. doi:10.1007/s11367-018-1562-5.
  19. Asadollahfardi, G., Katebi, A., Taherian, P., Panahandeh, A. Environmental Life Cycle Assessment of Concrete with Different Mixed Designs. International Journal of Construction Management, 2021; 21 (7): 665–676. doi:10.1080/15623599.2019.1579015.
  20. Bellil, A., Aziz, A., El Amrani El Hassani, I. I., Achab, M., El Haddar, A., Benzaouak, A. Producing of Lightweight Concrete from Two Varieties of Natural Pozzolan from the Middle Atlas (Morocco): Economic, Ecological, and Social Implications. Silicon, 2022; 14 (8): 4237–4248. doi:10.1007/s12633-021-01155-8.
  21. Ersan, Y. C., Gulcimen, S., Imis, T. N., Saygin, O., Uzal, N. Life Cycle Assessment of Lightweight Concrete Containing Recycled Plastics and Fly Ash. European Journal of Environmental and Civil Engineering, 2022; 26 (7): 2722–2735. doi:10.1080/19648189.2020.1767216.
  22. Shahmansouri, A. A., Akbarzadeh Bengar, H., AzariJafari, H. Life Cycle Assessment of Eco-Friendly Concrete Mixtures Incorporating Natural Zeolite in Sulfate-Aggressive Environment. Construction and Building Materials, 2021; 268: 121136. doi:10.1016/j.conbuildmat.2020.121136.
  23. Napolano, L., Menna, C., Graziano, S. F., Asprone, D., D’Amore, M., De Gennaro, R., Dondi, M. Environmental Life Cycle Assessment of Lightweight Concrete to Support Recycled Materials Selection for Sustainable Design. Construction and Building Materials, 2016; 119: 370–384. doi:10.1016/j.conbuildmat.2016.05.042.
  24. Valipour, M., Yekkalar, M., Shekarchi, M., Panahi, S. Environmental Assessment of Green Concrete Containing Natural Zeolite on the Global Warming Index in Marine Environments. Journal of Cleaner Production, 2014; 65: 418–423. doi:10.1016/j.jclepro.2013.07.055.
  25. Nath, P., Sarker, P. K., Biswas, W. K. Effect of Fly Ash on the Service Life, Carbon Footprint and Embodied Energy of High Strength Concrete in the Marine Environment. Energy and Buildings, 2018; 158: 1694–1702. doi:10.1016/j.enbuild.2017.12.011.
  26. International Organization for Standardization (ISO). ISO 14040:2006: Environmental management – Life cycle assessment – Principles and framework. Geneva (CH): International Organization for Standardization; 2006.
  27. Turner, L. K., Collins, F. G. Carbon Dioxide Equivalent (CO2-e) Emissions: A Comparison between Geopolymer and OPC Cement Concrete. Construction and Building Materials, 2013; 43: 125–130. doi:10.1016/j.conbuildmat.2013.01.023.
  28. Vázquez-Calle, K., Guillén-Mena, V., Quesada-Molina, F. Analysis of the Embodied Energy and CO2 Emissions of Ready-Mixed Concrete: A Case Study in Cuenca, Ecuador. Materials, 2022; 15 (14): 4896. doi:10.3390/ma15144896.
  29. Goedkoop M, Oele M, Leijting J, Ponsioen T, Meijer E. Introduction to LCA with SimaPro. Amersfoort (NL): PRé Consultants; 2016.
Volume 1, Issue 2
July 2025
Pages 14-30
  • Receive Date: 23 May 2025
  • Revise Date: 05 June 2025
  • Accept Date: 12 June 2025
  • First Publish Date: 18 June 2025