Damage Identification in Truss Structures Using a Hybrid PSO-HHO Algorithm with Selective Natural Frequencies and Mode Shape

Document Type : Original Article

Authors

Civil Engineering Department, K. N. Toosi University of Technology, Tehran, Iran

Abstract

Structural damage can be detected non-destructively by comparing the dynamic characteristics of a structure before and after a major event. Optimization techniques are effective tools for damage identification using structural dynamic properties, as the problem is formulated and solved inversely. To achieve this, the damage levels in each element are treated as decision variables. The objective is to fine-tune these variables so that the model’s response closely aligns with the experimentally observed dynamic characteristics of the damaged structure. This study proposes a hybrid Particle Swarm optimization- Harris Hawks optimization algorithm for damage detection in truss structures based on dynamic structural responses. To evaluate the effectiveness of the proposed method, a 15-element planar truss is considered as a numerical example. The results highlight the importance of incorporating modal parameters to accurately identify the damage scenario. The results demonstrate that the hybrid algorithm significantly outperforms the individual algorithms in accurately detecting structural damage.

Keywords

Main Subjects


  1. Rincon, L. F., Moscoso, Y. M., Hamami, A. E. A., Matos, J. C., Bastidas-Arteaga, E. Degradation Models and Maintenance Strategies for Reinforced Concrete Structures in Coastal Environments under Climate Change: A Review. Buildings, 2024; 14 (3). doi:10.3390/buildings14030562.
  2. Feng, D., Feng, M. Q. Computer Vision for SHM of Civil Infrastructure: From Dynamic Response Measurement to Damage Detection – A Review. Engineering Structures, 2018; 156: 105–117. doi:10.1016/j.engstruct.2017.11.018.
  3. Asgari, A., Khabiri, A. Dynamic Analysis of Fatigue-Cracked Beams: The Nonlinear Response with the Analytical Method. Civil Engineering and Applied Solutions, 2025; 1(2): 43-54. doi: 10.22080/ceas.2025.29000.1002.
  4. Tibaduiza Burgos, D. A., Gomez Vargas, R. C., Pedraza, C., Agis, D., Pozo, F. Damage Identification in Structural Health Monitoring: A Brief Review from Its Implementation to the Use of Data-Driven Applications. Sensors (Switzerland), 2020; 20 (3). doi:10.3390/s20030733.
  5. Kong, K., Dyer, K., Payne, C., Hamerton, I., Weaver, P. M. Progress and Trends in Damage Detection Methods, Maintenance, and Data-Driven Monitoring of Wind Turbine Blades – A Review. Renewable Energy Focus , 2023; 44: 390–412. doi:10.1016/j.ref.2022.08.005.
  6. Doebling, S. W. S., Farrar, C. R. C., Prime, M. B. M., Shevitz, D. W. D. Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review. Los Alamos National Laboratory, 1996; doi:10.2172/249299.
  7. Xiang, Z., Wang, L., Zhou, M. Suppressing Damage Identification Errors from Selected Natural Frequencies and Mode Shape Points. Inverse Problems in Science and Engineering, 2012; 20 (7): 871–890. doi:10.1080/17415977.2011.589902.
  8. Abe, M. Structural Damage Detection by Natural Frequencies. In 37th Structure, Structural Dynamics and Materials Conference. American Institute of Aeronautics and Astronautics: Reston, Virigina, 1996; pp 1064–1069. doi:10.2514/6.1996-1440.
  9. Kaveh, A., Zolghadr, A. An Improved CSS for Damage Detection of Truss Structures Using Changes in Natural Frequencies and Mode Shapes. Advances in Engineering Software, 2015; 80: 93–100. doi:10.1016/j.advengsoft.2014.09.010.
  10. Cawley, P., Adams, R. D. The Location of Defects in Structures from Measurements of Natural Frequencies. The Journal of Strain Analysis for Engineering Design, 1979; 14 (2): 49–57. doi:10.1243/03093247V142049.
  11. Adams, R. D., Cawley, P., Pye, C. J., Stone, B. J. Vibration Technique for Non-Destructively Assessing the Integrity of Structures. J Mech Eng Sci, 1978; 20 (2): 93–100. doi:10.1243/jmes_jour_1978_020_016_02.
  12. Ciambella, J., Pau, A., Vestroni, F. Modal Curvature-Based Damage Localization in Weakly Damaged Continuous Beams. Mechanical Systems and Signal Processing, 2019; 121: 171–182. doi:10.1016/j.ymssp.2018.11.012.
  13. Chu, S. Y., Wu, R. L. A Normalized-Relative-Displacement-Vibration-Shape (NRDVS)-Based Structural Damage Assessment Scheme. Journal of Structural Integrity and Maintenance, 2018; 3 (3): 150–159. doi:10.1080/24705314.2018.1492667.
  14. Liu, Y. Research on Bridge Damage Identification Method Based on Dynamic Characteristics. Journal of Engineering Research and Reports, 2023; 25 (8): 87–93. doi:10.9734/jerr/2023/v25i8961.
  15. Yoo, S.-H. Damage Detection of Shear Building Structures Using Dynamic Response. Journal of the Korea institute for structural maintenance and inspection, 2014; 18 (3): 101–107. doi:10.11112/jksmi.2014.18.3.101.
  16. Hsieh, K. H., Halling, M. W., Barr, P. J., Robinson, M. J. Structural Damage Detection Using Dynamic Properties Determined from Laboratory and Field Testing. Journal of Performance of Constructed Facilities, 2008; 22 (4): 238–244. doi:10.1061/(asce)0887-3828(2008)22:4(238).
  17. Sun, G., Liu, C., Zhang, S., Hao, E. Three-Step Damage Identification Method Based on Dynamic Characteristics. Transactions of Tianjin University, 2014; 20 (5): 379–384. doi:10.1007/s12209-014-2115-z.
  18. Feng, D., & Feng, M. Q.  Computer vision for SHM of civil infrastructure: From dynamic response measurement to damage detection–A review.  Engineering Structures, 2018; 156:105-117. Doi: 1016/j.engstruct.2017.11.018.
  19. Pothisiri, T., Hjelmstad, K. D. Structural Damage Detection and Assessment from Modal Response. Journal of Engineering Mechanics, 2003; 129 (2): 135–145. doi:10.1061/(asce)0733-9399(2003)129:2(135).
  20. Huynh, D., He, J., Tran, D. Damage Location Vector: A Non-Destructive Structural Damage Detection Technique. Computers and Structures, 2005; 83 (28-30): 2353–2367. doi:10.1016/j.compstruc.2005.03.029.
  21. Escobar, J. A., Sosa, J. J., Gómez, R. Structural Damage Detection Using the Transformation Matrix. Computers and Structures, 2005; 83 (4–5): 357–368. doi:10.1016/j.compstruc.2004.08.013.
  22. Magacho, E. G., Jorge, A. B., Gomes, G. F. Inverse Problem Based Multiobjective Sunflower Optimization for Structural Health Monitoring of Three-Dimensional Trusses. Evolutionary Intelligence, 2023; 16 (1): 247–267. doi:10.1007/s12065-021-00652-4.
  23. Mashayekhi, M., Shirpour, A., Sadeghi, R. Finding Optimum Parameters of Passive Tuned Mass Damper by PSO, WOA, and Hybrid PSO-WOA (HPW) Algorithms. Journal of Soft Computing in Civil Engineering, 2023; 7 (4): 72–92. doi:10.22115/SCCE.2023.352340.1489.
  24. Ghaemifard, S., Ghannadiasl, A. Usages of Metaheuristic Algorithms in Investigating Civil Infrastructure Optimization Models; a Review. AI in Civil Engineering, 2024; 3 (1). doi:10.1007/s43503-024-00036-4.
  25. Sahoo, B., Maity, D. Damage Assessment of Structures Using Hybrid Neuro-Genetic Algorithm. Applied Soft Computing Journal, 2007; 7 (1): 89–104. doi:10.1016/j.asoc.2005.04.001.
  26. Aval, S. B. B., Mohebian, P. A Novel Optimization Algorithm Based on Modal Force Information for Structural Damage Identification. International Journal of Structural Stability and Dynamics, 2021; 21 (7). doi:10.1142/S0219455421501005.
  27. Abdolkhani, A., Raoufi, R. Structural Modal Identification and Damage Detection with Incomplete Data Utilized by Genetic Algorithm Optimization. Structures, 2023; 55: 16–27. doi:10.1016/j.istruc.2023.06.009.
  28. Gökdaǧ, H., Yildiz, A. R. Structural Damage Detection Using Modal Parameters and Particle Swarm Optimization. Materialpruefung/Materials Testing, 2012; 54 (6): 416–420. doi:10.3139/120.110346.
  29. Chandrupatla, T., Belegundu, A. Introduction to finite elements in engineering. London: Pearson; 2021. doi:10.1017/9781108882293.
  30. Kaveh, A., Dadras, A. Structural Damage Identification Using an Enhanced Thermal Exchange Optimization Algorithm. Engineering Optimization, 2018; 50 (3): 430–451. doi:10.1080/0305215X.2017.1318872.
  31. Zhu, J. J., Huang, M., Lu, Z. R. Bird Mating Optimizer for Structural Damage Detection Using a Hybrid Objective Function. Swarm and Evolutionary Computation, 2017; 35: 41–52. doi:10.1016/j.swevo.2017.02.006.
  32. Zamani, F., Alavi, S. H., Mashayekhi, M., Noroozinejad Farsangi, E., Sadeghi-Movahhed, A., Majdi, A. Optimum Design of Double Tuned Mass Dampers Using Multiple Metaheuristic Multi-Objective Optimization Algorithms under Seismic Excitation. Frontiers in Built Environment, 2025; 11. doi:10.3389/fbuil.2025.1559530.
  33. Minh, H. Le, Sang-To, T., Abdel Wahab, M., Cuong-Le, T. A New Metaheuristic Optimization Based on K-Means Clustering Algorithm and Its Application to Structural Damage Identification. Knowledge-Based Systems, 2022; 251 (109189). doi:10.1016/j.knosys.2022.109189.
  34. Tran-Ngoc, H., Khatir, S., Ho-Khac, H., De Roeck, G., Bui-Tien, T., Abdel Wahab, M. Efficient Artificial Neural Networks Based on a Hybrid Metaheuristic Optimization Algorithm for Damage Detection in Laminated Composite Structures. Composite Structures, 2021; 262 (113339). doi:10.1016/j.compstruct.2020.113339.
  35. Zacharakis, I., Giagopoulos, D. Vibration‐Based Damage Detection Using Finite Element Modeling and the Metaheuristic Particle Swarm Optimization Algorithm. Sensors, 2022; 22 (14). doi:10.3390/s22145079.
  36. Kareem, S. W., Hama Ali, K. W., Askar, S., Xoshaba, F. S., Hawezi, R. Metaheuristic Algorithms in Optimization and Its Application: A Review. JAREE (Journal on Advanced Research in Electrical Engineering), 2022; 6 (1). doi:10.12962/jaree.v6i1.216.
  37. Abbasi, M. H., Moradi, H. Optimum Design of Tuned Mass Damper via PSO Algorithm for the Passive Control of Forced Oscillations in Power Transmission Lines. SN Applied Sciences, 2020; 2 (5). doi:10.1007/s42452-020-2677-4.
  38. Mashayekhi, M. R., Mosayyebi, S. A New Hybrid Harris Hawks Optimization (HHO) and Particle Swarm Optimization (PSO) Algorithm for the Design of Castellated Beams. Asian Journal of Civil Engineering, 2023; 24 (7): 2121–2139. doi:10.1007/s42107-023-00630-4.
  39. Coello Coello, C. A., Pulido, G. T., Lechuga, M. S. Handling Multiple Objectives with Particle Swarm Optimization. IEEE Transactions on Evolutionary Computation, 2004; 8 (3): 256–279. doi:10.1109/TEVC.2004.826067.
  40. Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN'95 – International Conference on Neural Networks; 1995 Nov 27–Dec 1; Perth, Australia. Vol. 4. p. 1942–8.
  41. Mashayekhi, M., Harati, M., Estekanchi, H. E. Development of an Alternative PSO-Based Algorithm for Simulation of Endurance Time Excitation Functions. Engineering Reports, 2019; 1 (3). doi:10.1002/eng2.12048.
  42. lu, junhui, Zhang, L., Yue, Y. A Particle Swarm Optimization Algorithm with Dynamic Weights. In Second International Conference on Electronic Information Technology (EIT 2023), SPIE; Xiao, W., Leng, L., Eds.; 2023; p 142. doi:10.1117/12.2685758.
  43. Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H. Harris Hawks Optimization: Algorithm and Applications. Future Generation Computer Systems, 2019; 97: 849–872. doi:10.1016/j.future.2019.02.028.
  44. Alabool, H. M., Alarabiat, D., Abualigah, L., Heidari, A. A. Harris Hawks Optimization: a comprehensive review of recent variants and applications. Neural Computing and Applications. 2021; 33:8939–80. doi:10.1007/s00521-021-05720-5.
  45. Clerc, M., Kennedy, J. The Particle Swarm-Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary Computation, 2002; 6 (1): 58–73. doi:10.1109/4235.985692.
  46. Devarapalli, R., Kumar, V. Power System Oscillation Damping Controller Design: A Novel Approach of Integrated HHO-PSO Algorithm. Archives of Control Sciences, 2021; 31 (3): 553–591. doi:10.24425/acs.2021.138692.
  47. Ashfaq, R., Sajjad, I. A. Multiobjective optimal power flow (MO-OPF) using hybrid Harris Hawk–Particle Swarm Optimization algorithm (HHO–PSO). In: 2023 6th International Conference on Energy Conservation and Efficiency (ICECE); 2023 Mar 15–16; Lahore, Pakistan. p. 1–6. doi:10.1109/ICECE58062.2023.10092489.
  48. Murugesan, S., Suganyadevi, M. V. Performance Analysis of Simplified Seven-Level Inverter Using Hybrid HHO-PSO Algorithm for Renewable Energy Applications. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 2024; 48 (2): 781–801. doi:10.1007/s40998-023-00676-9.
  49. Laier, J. E., Villalba, J. D. Ensuring Reliable Damage Detection Based on the Computation of the Optimal Quantity of Required Modal Data. Computers and Structures, 2015; 147: 117–125. doi:10.1016/j.compstruc.2014.09.020.
  50. Hibbeler, R. C., Tan, K. H. Structural analysis. Harlow (UK): Pearson Prentice Hall; 2006.
Volume 1, Issue 2
July 2025
Pages 55-73
  • Receive Date: 25 May 2025
  • Revise Date: 07 June 2025
  • Accept Date: 13 June 2025
  • First Publish Date: 01 July 2025