A Comparative Study on the Mechanical Performance of Unreinforced and Reinforced Stone Columns Using Geotextile and Recycled Tire Crumbs

Document Type : Original Article

Authors

1 Toos Institute of Higher Education, Mashhad, Iran

2 Department of Civil Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran

Abstract

Stone columns are among the most widely adopted techniques for improving soft sediments and loose fine-grained soils. They enhance the strength of weak soils and reduce settlement under applied loads. However, their performance in very soft soils is often limited due to the lateral displacement of column materials into the surrounding soil during loading. This lateral spread and settlement of stone materials reduce the effectiveness of the stone column system. To overcome these challenges, strategies such as increasing confining pressure or reinforcing the stone columns with geosynthetic materials have been explored. In this study, the mechanical performance of stone columns reinforced with geotextile encasement and tire crumbs was compared to that of unreinforced stone columns. Tire crumbs, typically sourced from recycled tires, present an environmentally sustainable alternative by reducing tire waste accumulation in landfills and minimizing the associated environmental risks. Their application in ground improvement contributes to greener geotechnical engineering practices. To evaluate the effectiveness of the proposed reinforcements, consolidated undrained triaxial tests were conducted on various specimens. The results revealed that tire crumbs significantly enhanced the elastic modulus, with an increase of approximately 60% observed in specimens containing 20% tire crumbs. This enhancement is likely due to reduced interlocking and weaker grain-to-grain bonding within the modified column material.

Keywords

Main Subjects


  1. Ali, K., Shahu, J., Sharma, K. Model tests on geosynthetic-reinforced stone columns: a comparative study. Geosynthetics International, 2012; 19: 292-305. doi:10.1680/gein.12.00016.
  2. Banerjee, S., Manna, B., Shahu, J. Behaviour of geocell reinforcement in a multi-layered flexible pavement under repeated loading. International Journal of Geosynthetics and Ground Engineering, 2024; 10: 34. doi:10.1007/s40891-024-00541-7.
  3. Kouzegaran, S., Oliaei, M. Numerical Analysis of the Cellular Geosynthetics Performance in Unpaved Roads and Influencing Factors. Transportation Infrastructure Geotechnology, 2025; 12: 1-18. doi:10.1007/s40515-024-00500-9.
  4. Gao, G., Meguid, M. A. Effect of particle shape on the response of geogrid-reinforced systems: Insights from 3D discrete element analysis. Geotextiles and Geomembranes, 2018; 46: 685-698. doi:10.1016/j.geotexmem.2018.07.001.
  5. Oliaei, M., Kouzegaran, S. Efficiency of cellular geosynthetics for foundation reinforcement. Geotextiles and Geomembranes, 2017; 45: 11-22. doi:10.1016/j.geotexmem.2016.11.001.
  6. Rezvani, R. Shearing response of geotextile-reinforced calcareous soils using monotonic triaxial tests. Marine Georesources & Geotechnology, 2020; 38: 238-249. doi:10.1080/1064119X.2019.1566936.
  7. Roshan, M. J., Rashid, A. S. B. A. Geotechnical characteristics of cement stabilized soils from various aspects: A comprehensive review. Arabian Journal of Geosciences, 2024; 17: 1. doi:10.1007/s12517-023-11796-1.
  8. AlNaddaf, H. Q. A., Kouzegaran, S., Akhtarpour, A., Fattah, M. Y. Effects of Cement Treatment on the Behavior of Unsaturated Gypseous Soils. 2025; 12: 1-33. doi:10.1007/s40515-025-00602-y.
  9. Ebailila, M., Kinuthia, J., Oti, J. Role of gypsum content on the long-term performance of lime-stabilised soil. Materials, 2022; 15: 5099. doi:10.3390/ma15155099.
  10. Abdulameer AlNaddaf, H. Q., Kouzegaran, S., Fattah, M. Y., Akhtarpour, A. Effects of Cement Treatment on Water Retention Behavior and Collapse Potential of Gypseous Soils: Experimental Investigation and Prediction Models. Advances in Civil Engineering, 2024; 2024: 6637911. doi:10.1155/2024/6637911.
  11. Dokaneh, M., Salimi, M., Rezvani, R., Payan, M., Hosseinpour, I. Valorization of industrial wastes for stabilizing highly expansive clays: Mechanical, microstructural and durability improvements. Construction and Building Materials, 2025; 481: 141497. doi:10.1016/j.conbuildmat.2025.141497.
  12. Aljanabi, Q. A., Chik, Z., Kasa, A. Construction of a new highway embankment on the soft clay soil treatment by stone columns in Malaysia. Journal of Engineering Science and Technology, 2013; 8: 448-456.
  13. Pradeep, N. M., Kumar, S., Gupta, S., Nishant, M. Behavior of group of geosynthetic encased granular piles with tire chips- aggregates mixture under static and cyclic loading – A model study. Construction and Building Materials, 2024; 431: 136507. doi:10.1016/j.conbuildmat.2024.136507.
  14. Chen, J.-F., Wang, X.-T., Xue, J.-F., Zeng, Y., Feng, S.-Z. Uniaxial compression behavior of geotextile encased stone columns. Geotextiles and Geomembranes, 2018; 46: 277-283. doi:10.1016/j.geotexmem.2018.01.003.
  15. Abusharar, S. W., Han, J. Two-dimensional deep-seated slope stability analysis of embankments over stone column-improved soft clay. Engineering Geology, 2011; 120: 103-110. doi:10.1016/j.enggeo.2011.04.002.
  16. Barksdale, R. D., Bachus, R. C. Design and construction of stone columns. Washington (DC): Turner-Fairbank Highway Research Center; 1983. Report No.: FHWA-RD-83-026.
  17. Zheng, G., Yu, X., Zhou, H., Wang, S., Zhao, J., He, X., Yang, X. Stability analysis of stone column-supported and geosynthetic-reinforced embankments on soft ground. Geotextiles and Geomembranes, 2020; 48: 349-356. doi:10.1016/j.geotexmem.2019.12.006.
  18. Mohapatra, S. R., Rajagopal, K., Sharma, J. Direct shear tests on geosynthetic-encased granular columns. Geotextiles and Geomembranes, 2016; 44: 396-405. doi:10.1016/j.geotexmem.2016.01.002.
  19. Malarvizhi, S. N., Ilamparuthi Comparative Study on the Behavior of Encased Stone Column and Conventional Stone Column. Soils and Foundations, 2007; 47: 873-885. doi:10.3208/sandf.47.873.
  20. Murugesan, S., Rajagopal, K. Model tests on geosynthetic-encased stone columns. Geosynthetics International, 2007; 14: 346-354. doi:10.1680/gein.2007.14.6.346.
  21. Murugesan, S., Rajagopal, K. Studies on the behavior of single and group of geosynthetic encased stone columns. Journal of Geotechnical and Geoenvironmental Engineering, 2010; 136: 129-139. doi:10.1061/(ASCE)GT.1943-5606.0000187.
  22. Gniel, J., Bouazza, A. Improvement of soft soils using geogrid encased stone columns. Geotextiles and Geomembranes, 2009; 27: 167-175. doi:10.1016/j.geotexmem.2008.11.001.
  23. Nishant, M., Kumar, S. Behavior of an embankment on soft clay deposit supported by granular columns under the action of staged cyclic loading. Construction and Building Materials, 2025; 472: 140899. doi:10.1016/j.conbuildmat.2025.140899.
  24. Srijan, Gupta, A. K. Sustainable material as a column filler in soft clay bed reinforced with encased column: numerical analysis. Scientific Reports, 2025; 15: 1650. doi:10.1038/s41598-025-86036-5.
  25. Srijan, S., Gupta, A. K. Vertically and Horizontally Reinforced End-Bearing Stone Column: An Experimental and Numerical Investigation. Applied Sciences, 2023; 13: 11016. doi:10.3390/app131911016.
  26. Rathod, D., Abid, M. S., Vanapalli, S. K. Performance of polypropylene textile encased stone columns. Geotextiles and Geomembranes, 2021; 49: 222-242. doi:10.1016/j.geotexmem.2020.10.025.
Volume 1, Issue 4
September 2025
Pages 40-48
  • Receive Date: 24 May 2025
  • Revise Date: 08 June 2025
  • Accept Date: 21 June 2025
  • First Publish Date: 15 July 2025