Shape Optimization of Truss Structures for Displacement Constraints Using a Modified Particle Swarm Optimization (MPSO) Algorithm

Document Type : Original Article

Authors

Department of Civil Engineering, Shomal University, Amol, Iran

Abstract

This paper presents a modified particle swarm optimization (MPSO) algorithm for the shape optimization of truss structures under displacement constraints. The proposed MPSO employs a multi-stage strategy, where the final solution of each stage is used to reinitialize the swarm in the next stage, improving convergence accuracy. A normal-based distribution is used for swarm regeneration, promoting effective exploration around the best solution found. Design variables are the nodal coordinates of the structures, and the total weight is considered as the objective function. Design constraints include limitations on nodal displacements, and some geometric constraints are also considered. The method is evaluated using four benchmark truss examples. Results show that MPSO reduces structural weight by 7% for the 13-bar truss, 5.7% for the 25-bar truss, and 2.2% for the 52-bar truss, compared to those reported in the literature, while also maintaining or improving displacement control. In the 37-bar planar truss, the algorithm marginally outperforms the existing result by reducing weight by 0.18%. These outcomes confirm that the proposed MPSO provides competitive or superior performance compared to reference methods in both efficiency and solution quality.

Keywords

Main Subjects


  1. Shemshaki, E., Haddad, M. H., Mashayekhi, M., Aghajanzadeh, S. M., Majdi, A., Noroozinejad Farsangi, E. A Novel Hybrid Metaheuristic MPA-PSO to Optimize the Properties of Viscous Dampers. Buildings, 2025; 15: doi:10.3390/buildings15081330.
  2. Lambora, A., Gupta, K., Chopra, K. Genetic Algorithm- A Literature Review. In: International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon); 2019 Feb 14-16; Faridabad, India. p. 380-384. doi:10.1109/COMITCon.2019.8862255.
  3. Babu, B. V., Jehan, M. M. L. Differential Evolution for Multi-Objective Optimization. In: The 2003 Congress on Evolutionary Computation; 2003 Dec 8-12; Canberra, Australia. p. 2696-2703. doi:10.1109/CEC.2003.1299429.
  4. Fourie, P. C., Groenwold, A. A. The Particle Swarm Optimization Algorithm in Size and Shape Optimization. Structural and Multidisciplinary Optimization, 2002; 23: 259-267. doi:10.1007/s00158-002-0188-0.
  5. Kaveh, A., Talatahari, S. A Hybrid Particle Swarm and Ant Colony Optimization for Design of Truss Structures. Asian journal of civil engineering, 2008; 9: 329-348. doi:10.1260/026635108786260956.
  6. Selvi, V., Umarani, R. Comparative Analysis of Ant Colony and Particle Swarm Optimization Techniques. International Journal of Computer Applications, 2010; 5: 1-6. doi:10.5120/908-1286.
  7. Mashayekhi, M., Shirpour, A., Sadeghi, R. Finding Optimum Parameters of Passive Tuned Mass Damper by PSO, WOA, and Hybrid PSO-WOA (HPW) Algorithms. Journal of Soft Computing in Civil Engineering, 2023; 7: 72-92. doi:10.22115/scce.2023.352340.1489.
  8. Lamberti, L. An Efficient Simulated Annealing Algorithm for Design Optimization of Truss Structures. Computers & Structures, 2008; 86: 1936-1953. doi:10.1016/j.compstruc.2008.02.004.
  9. Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P. Optimization by Simulated Annealing. Science, 1983; 220: 671-680. doi:10.1126/science.220.4598.671.
  10. Rajeev, S., Krishnamoorthy, C. S. Discrete Optimization of Structures Using Genetic Algorithms. Journal of Structural Engineering, 1992; 118: 1233-1250. doi:10.1061/(ASCE)0733-9445(1992)118:5(1233).
  11. Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning. 1st ed. Boston (MA): Addison-Wesley; 1989.
  12. Wang, D., Zhang, W. H., Jiang, J. S. Truss Shape Optimization with Multiple Displacement Constraints. Computer Methods in Applied Mechanics and Engineering, 2002; 191: 3597-3612. doi:10.1016/S0045-7825(02)00297-9.
  13. Lee, K. S., Geem, Z. W. A New Structural Optimization Method Based on the Harmony Search Algorithm. Computers & Structures, 2004; 82: 781-798. doi:10.1016/j.compstruc.2004.01.002.
  14. Toğan, V., Daloğlu, A. T. Optimization of 3D Trusses with Adaptive Approach in Genetic Algorithms. Engineering Structures, 2006; 28: 1019-1027. doi:10.1016/j.engstruct.2005.11.007.
  15. Salajegheh, E., Mashayekhi, M., Khatibinia, M., Kaykha, M. Optimum Shape Design of Space Structures by Genetic Algorithm. International Journal of Space Structures, 2009; 24: 45-57. doi:10.1260/026635109788251502.
  16. Cheng, J. Optimum Design of Steel Truss Arch Bridges Using a Hybrid Genetic Algorithm. Journal of Constructional Steel Research, 2010; 66: 1011-1017. doi:10.1016/j.jcsr.2010.03.007.
  17. Kaveh, A., Talatahari, S. An Enhanced Charged System Search for Configuration Optimization Using the Concept of Fields of Forces. Structural and Multidisciplinary Optimization, 2011; 43: 339-351. doi:10.1007/s00158-010-0571-1.
  18. Kennedy, J., Eberhart, R. Particle Swarm Optimization. In: Proceedings of ICNN'95 - International Conference on Neural Networks; 1995 Nov 27- Dec 1; Perth, Australia. p. 1942-1948. doi:10.1109/ICNN.1995.488968.
  19. Seyedpoor, S. M., Gholizadeh, S., Talebian, S. R. An Efficient Structural Optimisation Algorithm Using a Hybrid Version of Particle Swarm Optimisation with Simultaneous Perturbation Stochastic Approximation. Civil Engineering and Environmental Systems, 2010; 27: 295-313. doi:10.1080/10286600902998526.
  20. Luh, G.-C., Lin, C.-Y. Optimal design of truss-structures using particle swarm optimization. Computers & Structures, 2011; 89: 2221-2232. doi:10.1016/j.compstruc.2011.08.013.
  21. Gholizadeh, S. Layout optimization of truss structures by hybridizing cellular automata and particle swarm optimization. Computers & Structures, 2013; 125: 86-99. doi:10.1016/j.compstruc.2013.04.024.
  22. Kaveh, A., Zolghadr, A. Democratic PSO for truss layout and size optimization with frequency constraints. Computers & Structures, 2014; 130: 10-21. doi:10.1016/j.compstruc.2013.09.002.
  23. Mortazavi, A., Toğan, V. Simultaneous size, shape, and topology optimization of truss structures using integrated particle swarm optimizer. Structural and Multidisciplinary Optimization, 2016; 54: 715-736. doi:10.1007/s00158-016-1449-7.
  24. Cao, H., Qian, X., Chen, Z., Zhu, H. Enhanced particle swarm optimization for size and shape optimization of truss structures. Engineering Optimization, 2017; 49: 1939-1956. doi:10.1080/0305215X.2016.1273912.
  25. Tsiptsis, I. N., Liimatainen, L., Kotnik, T., Niiranen, J. Structural optimization employing isogeometric tools in Particle Swarm Optimizer. Journal of Building Engineering, 2019; 24: 100761. doi:10.1016/j.jobe.2019.100761.
  26. Jafari, M., Salajegheh, E., Salajegheh, J. Optimal design of truss structures using a hybrid method based on particle swarm optimizer and cultural algorithm. Structures, 2021; 32: 391-405. doi:10.1016/j.istruc.2021.03.017.
  27. Seyedpoor, S. M., Salajegheh, J., Salajegheh, E., Gholizadeh, S. Optimal design of arch dams subjected to earthquake loading by a combination of simultaneous perturbation stochastic approximation and particle swarm algorithms. Applied Soft Computing, 2011; 11: 39-48. doi:10.1016/j.asoc.2009.10.014.
Volume 1, Issue 3
August 2025
Pages 1-16
  • Receive Date: 03 June 2025
  • Revise Date: 16 July 2025
  • Accept Date: 14 July 2025
  • First Publish Date: 15 July 2025