Evaluation of Setting Behavior in Slag‑Based Geopolymer Concrete using Ultrasonic Pulse Velocity under Varying Mix Proportions

Document Type : Original Article

Author

Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Stockholm, Sweden

Abstract

In response to the growing environmental crisis and the urgent need to curb carbon emissions and improve waste management, slag‑based geopolymer concrete has emerged as a low‑energy, sustainable alternative to ordinary Portland cement. This study investigates the initial and final setting behaviour of ground‑granulated blast‑furnace slag (GGBFS) geopolymer concrete using the ultrasonic pulse velocity (UPV) technique alongside a Freshcon mold system. Key variables examined include the molarity and type of alkaline activator, the alkali‑to‑slag ratio, and the proportion of slag within the concrete matrix. UPV traces delineate three distinct stages of induction (dormant), polymerization onset (activation), and network consolidation (hardening), each typified by its signature “S‑shaped” profile. In this study, increasing the concentration of the alkaline activator and the proportion of ground granulated blast-furnace slag (GGBFS) was found to dramatically shorten both initial and final setting times of slag‑based geopolymer mixtures; however, beyond an optimal activator concentration and solution-to-slag ratio, these accelerating effects attenuate and polymerization kinetics become disrupted. Notably, whereas ordinary Portland cement exhibits an induction period over 240 minutes, geopolymer samples activated at 6M complete their induction phase in under 30 minutes, a 6–8 fold increase in initial setting rate. Such rapid setting, while advantageous for expediting placement cycles, poses challenges in mass concrete pours by heightening the risk of cold joints and imposing stringent formwork time constraints. Conversely, this accelerated hardening can be leveraged as a significant asset in future investigations into precast concrete elements and tunnel‑lining shotcrete applications.

Keywords

Main Subjects


  1. Nodehi, M., Taghvaee, V. M. Alkali-Activated Materials and Geopolymer: a Review of Common Precursors and Activators Addressing Circular Economy. Circular Economy and Sustainability, 2022; 2: 165-196. doi:10.1007/s43615-021-00029-w.
  2. Behforouz, B., Balkanlou, V. S., Naseri, F., Kasehchi, E., Mohseni, E., Ozbakkaloglu, T. Investigation of eco-friendly fiber-reinforced geopolymer composites incorporating recycled coarse aggregates. International Journal of Environmental Science and Technology, 2020; 17: 3251-3260. doi:10.1007/s13762-020-02643-x.
  3. Amran, M., Debbarma, S., Ozbakkaloglu, T. Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Construction and Building Materials, 2021; 270: 121857. doi:10.1016/j.conbuildmat.2020.121857.
  4. Turner, L. K., Collins, F. G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 2013; 43: 125-130. doi:10.1016/j.conbuildmat.2013.01.023.
  5. Robbie, A. Global CO2 emissions from cement production. Earth System Science Data, 2017; 10: 195-217. doi:10.5194/essd-10-195-2018.
  6. Shi, C., Jiménez, A. F., Palomo, A. New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, 2011; 41: 750-763. doi:10.1016/j.cemconres.2011.03.016.
  7. Matthes, W., Vollpracht, A., Villagrán, Y., Kamali-Bernard, S., Hooton, D., Gruyaert, E., Soutsos, M., De Belie, N. Ground Granulated Blast-Furnace Slag. In: N. De Belie, M. Soutsos, E. Gruyaert editors. Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials: State-of-the-Art Report of the RILEM Technical Committee 238-SCM, Working Group 4. Cham: Springer International Publishing; 2018. p. 1-53. doi:10.1007/978-3-319-70606-1_1.
  8. Davidovits, J. Geopolymers. Journal of thermal analysis, 1991; 37: 1633-1656. doi:10.1007/BF01912193.
  9. van Deventer, J. S. J., Provis, J. L., Duxson, P., Lukey, G. C. Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. Journal of Hazardous Materials, 2007; 139: 506-513. doi:10.1016/j.jhazmat.2006.02.044.
  10. Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O., Fernández-Jiménez, A. A review on alkaline activation: new analytical perspectives. Materiales de Construcción, 2014; 64: e022. doi:10.3989/mc.2014.00314.
  11. Wang, Y., Zhang, S., Li, G., Shi, X. Effects of alkali-treated recycled carbon fiber on the strength and free drying shrinkage of cementitious mortar. Journal of Cleaner Production, 2019; 228: 1187-1195. doi:10.1016/j.jclepro.2019.04.295.
  12. Fernández-Jiménez, A., Palomo, A. Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cement and Concrete Research, 2005; 35: 1984-1992. doi:10.1016/j.cemconres.2005.03.003.
  13. White, C. E., Provis, J. L., Proffen, T., van Deventer, J. S. J. Molecular mechanisms responsible for the structural changes occurring during geopolymerization: Multiscale simulation. AIChE Journal, 2012; 58: 2241-2253. doi:10.1002/aic.12743.
  14. Lolli, F., Manzano, H., Provis, J. L., Bignozzi, M. C., Masoero, E. Atomistic Simulations of Geopolymer Models: The Impact of Disorder on Structure and Mechanics. ACS Applied Materials & Interfaces, 2018; 10: 22809-22820. doi:10.1021/acsami.8b03873.
  15. Dai, X., Aydin, S., Yardimci, M. Y., Lesage, K., De Schutter, G. Early age reaction, rheological properties and pore solution chemistry of NaOH-activated slag mixtures. Cement and Concrete Composites, 2022; 133: 104715. doi:10.1016/j.cemconcomp.2022.104715.
  16. Aiken, T. A., Kwasny, J., Sha, W., Tong, K. T. Mechanical and durability properties of alkali-activated fly ash concrete with increasing slag content. Construction and Building Materials, 2021; 301: 124330. doi:10.1016/j.conbuildmat.2021.124330.
  17. Fang, Y., Zhuang, K., Zheng, D., Guo, W. The Influence of Alkali Content on the Hydration of the Slag-Based Geopolymer: Relationships between Resistivity, Setting, and Strength Development. Polymers, 2023; 15: doi:10.3390/polym15030518.
  18. Taghvayi, H., Behfarnia, K., Khalili, M. The Effect of Alkali Concentration and Sodium Silicate Modulus on the Properties of Alkali-Activated Slag Concrete. Journal of Advanced Concrete Technology, 2018; 16: 293-305. doi:10.3151/jact.16.293.
  19. Ahmed, H. U., Mohammed, A. S., Mohammed, A. A., Faraj, R. H. Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes. PLOS ONE, 2021; 16: e0253006. doi:10.1371/journal.pone.0253006.
  20. Arularasi, V., Thamilselvi, P., Avudaiappan, S., Saavedra Flores, E. I., Amran, M., Fediuk, R., Vatin, N., Karelina, M. Rheological Behavior and Strength Characteristics of Cement Paste and Mortar with Fly Ash and GGBS Admixtures. Sustainability, 2021; 13: doi:10.3390/su13179600.
  21. Ansell, A. Investigation of shrinkage cracking in shotcrete on tunnel drains. Tunnelling and Underground Space Technology, 2010; 25: 607-613. doi:10.1016/j.tust.2010.04.006.
  22. Jameel, F., Sjölander, A., Ansell, A. Testing the in situ properties of wet-mix shotcrete at early age. ed. Boca Raton (FL): CRC Press; 2025.
  23. Aldawsari, S., Kampmann, R., Harnisch, J., Rohde, C. Setting Time, Microstructure, and Durability Properties of Low Calcium Fly Ash/Slag Geopolymer: A Review. Materials, 2022; 15: doi:10.3390/ma15030876.
  24. Gebregziabiher, B. S., Thomas, R. J., Peethamparan, S. Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders. Construction and Building Materials, 2016; 113: 783-793. doi:10.1016/j.conbuildmat.2016.03.098.
  25. Jiang, X., Zhang, Y., Xiao, R., Polaczyk, P., Zhang, M., Hu, W., Bai, Y., Huang, B. A comparative study on geopolymers synthesized by different classes of fly ash after exposure to elevated temperatures. Journal of Cleaner Production, 2020; 270: 122500. doi:10.1016/j.jclepro.2020.122500.
  26. Feng, X., Wang, Y., Li, L., Jiang, Z., Zhou, G., Wu, Q., Wang, T. Experimental investigation on physical properties and early-stage strength of ultrafine fly ash-based geopolymer grouting material. Construction and Building Materials, 2024; 441: 137526. doi:10.1016/j.conbuildmat.2024.137526.
  27. American Society for Testing and Materials (ASTM). ASTM C403/C403M-16: Standard Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance. West Conshohocken (PA): ASTM International; 2016. doi:10.1520/C0403_C0403M-16.
  28. Lee, T., Lee, J. Setting time and compressive strength prediction model of concrete by nondestructive ultrasonic pulse velocity testing at early age. Construction and Building Materials, 2020; 252: 119027. doi:10.1016/j.conbuildmat.2020.119027.
  29. Li, Z., Alfredo Flores Beltran, I., Chen, Y., Šavija, B., Ye, G. Early-age properties of alkali-activated slag and glass wool paste. Construction and Building Materials, 2021; 291: 123326. doi:10.1016/j.conbuildmat.2021.123326.
  30. Sathiparan, N., Jayasundara, W. G. B. S., Samarakoon, K. S. D., Banujan, B. Prediction of characteristics of cement stabilized earth blocks using non-destructive testing: Ultrasonic pulse velocity and electrical resistivity. Materialia, 2023; 29: 101794. doi:10.1016/j.mtla.2023.101794.
  31. American Society for Testing and Materials (ASTM). ASTM C136/C136M: Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. West Conshohocken (PA): ASTM International; 2019. doi:10.1520/C0136_C0136M-14.
  32. American Society for Testing and Materials (ASTM). ASTM C33/C33M: Standard Specification for Concrete Aggregates. West Conshohocken (PA): ASTM International; 2018. doi:10.1520/C0033_C0033M-18.
  33. Zhang, H., Li, L., Long, T., Sarker, P. K., Shi, X., Cai, G., Wang, Q. The Effect of Ordinary Portland Cement Substitution on the Thermal Stability of Geopolymer Concrete. Materials, 2019; 12: doi:10.3390/ma12162501.
  34. Naghizadeh, A., Ekolu, S. Effect of different mixture parameters on the setting time of fly ash/rice husk ash-based geopolymer mortar. MATEC Web of Conferences, 2022; 361: 05001. doi:10.1051/matecconf/202236105001.
  35. American Society for Testing and Materials (ASTM). ASTM C191: Standard Test Method for Time of Setting of Hydraulic Cement by Vicat Needle. West Conshohocken (PA): ASTM International; 2000. doi:10.1520/C0191-21.
  36. British Standards Institution. BS 1881-203: Testing concrete recommendations for measurement of velocity of ultrasonic pulses in concrete. United Kingdom: BS Standard; 1986.
  37. British Standards Institution. BS EN 196-3: Methods of testing cement - Determination of setting times and soundness. United Kingdom: BS Standard; 2016.
  38. Reinhardt, H. W., Grosse, C. U. Continuous monitoring of setting and hardening of mortar and concrete. Construction and Building Materials, 2004; 18: 145-154. doi:10.1016/j.conbuildmat.2003.10.002.
  39. Huseien, G. F., Sam, A. R. M., Shah, K. W., Mirza, J., Tahir, M. M. Evaluation of alkali-activated mortars containing high volume waste ceramic powder and fly ash replacing GBFS. Construction and Building Materials, 2019; 210: 78-92. doi:10.1016/j.conbuildmat.2019.03.194.
  40. Xu, W., Tang, Z., Xie, Y., Long, G., Zhu, H., Kai, M., Peng, L., Wang, L., Zaland, S. Effect of synthesis parameters on the alkali activation reaction degree and the relationship between reaction degree and microstructure of fly ash-based geopolymers. Journal of Building Engineering, 2024; 93: 109874. doi:10.1016/j.jobe.2024.109874.
  41. Yang, C., Liu, J., Liu, L., Kuang, L., Zhang, S., Chen, Z., Li, J., Shi, C. Effects of different activators on autogenous shrinkage of alkali-activated slag cement. Construction and Building Materials, 2024; 446: 138018. doi:10.1016/j.conbuildmat.2024.138018.
  42. Mehdizadeh, H., Najafi Kani, E. Rheology and apparent activation energy of alkali activated phosphorous slag. Construction and Building Materials, 2018; 171: 197-204. doi:10.1016/j.conbuildmat.2018.03.130.
  43. Abdul Rahim, R. H., Rahmiati, T., Azizli, K. A., Man, Z., Nuruddin, M. F., Ismail, L. Comparison of Using NaOH and KOH Activated Fly Ash-Based Geopolymer on the Mechanical Properties. Materials Science Forum, 2015; 803: 179-184. doi:10.4028/scientific.net/MSF.803.179.
  44. Robeyst, N., Gruyaert, E., Grosse, C. U., De Belie, N. Monitoring the setting of concrete containing blast-furnace slag by measuring the ultrasonic p-wave velocity. Cement and Concrete Research, 2008; 38: 1169-1176. doi:10.1016/j.cemconres.2008.04.006.
Volume 1, Issue 3
August 2025
Pages 48-61
  • Receive Date: 03 July 2025
  • Revise Date: 11 July 2025
  • Accept Date: 23 July 2025
  • First Publish Date: 23 July 2025