This study explores the application of Fe-based shape memory alloys (Fe-SMAs) for the seismic strengthening of unreinforced masonry (URM) walls. Due to their unique thermomechanical behavior and cost-effectiveness, Fe-SMAs offer a promising alternative to traditional reinforcement materials. Using Abaqus finite element software, numerical models were developed and validated against experimental results to examine the structural performance of masonry walls reinforced with Fe-SMA strips. Three reinforcement configurations were investigated: vertical, V-shaped, and Λ-shaped layouts, each subjected to different levels of post-tensioning stress ranging from 100 MPa to 400 MPa. The results revealed a substantial improvement in lateral resistance and stiffness across all models. The vertically reinforced walls exhibited the highest gains, with up to a 96% increase in base shear resistance. V-shaped and Λ-shaped reinforcements also showed significant enhancements, mainly due to the bracing effect of the inclined SMA strips. While the failure mode remained primarily diagonal shear in all cases, the introduction of post-tensioning delayed crack initiation and improved energy dissipation capacity. The frictional interaction between the SMA strips and masonry units, augmented by the post-tensioning force, was identified as a key factor in enhancing performance. This study demonstrates that Fe-SMA reinforcement is a viable, innovative technique for retrofitting masonry walls, especially in earthquake-prone regions. The ease of installation, combined with the ability to apply force through thermal activation, makes Fe-SMAs a highly practical solution for improving the safety and resilience of existing masonry structures.
Maheri, M., Najafgholipour, M., Rajabi, A. The influence of mortar head joints on the in-plane and out-of-plane seismic strength of brick masonry walls. Iranian Journal of Science and Technology, 2011; 35: 63-79. doi:10.22099/ijstc.2012.657.
Nateghi, F., Alemi, F. Experimental study of seismic behaviour of typical Iranian URM brick walls. In: 14th World Conference on Earthquake Engineering; 2008 Oct 12-17; Beijing, China. p. 123-130.
Griffith, M. C., Vaculik, J., Lam, N., Wilson, J., Lumantarna, E. Cyclic testing of unreinforced masonry walls in two‐way bending. Earthquake Engineering & Structural Dynamics, 2007; 36: 801-821. doi:10.1002/eqe.654.
ElGawady, M., Lestuzzi, P., Badoux, M. Performance of URM walls under in-plane seismic loading. The Masonry Society Journal, 2005; 23: 85-104. doi:10.70803/001c.138950.
Gouveia, J. P., Lourenço, P. B. Masonry shear walls subjected to cyclic loading: influence of confinement and horizontal reinforcement. In: North American Masonry Conference; 2007 June 3-6; St. Louis, Missouri. p. 838–848.
Petry, S., Beyer, K. Cyclic test data of six unreinforced masonry walls with different boundary conditions. Earthquake Spectra, 2015; 31: 2459-2484. doi:10.1193/101513EQS269.
Wang, Q., Shi, Q., Tao, Y. Seismic behavior and shear strength of new-type fired perforated brick walls with high void ratio. Advances in Structural Engineering, 2019; 22: 1035-1048. doi:10.1177/1369433218802690.
ElGawady, M. A., Lestuzzi, P., Badoux, M. Aseismic retrofitting of unreinforced masonry walls using FRP. Composites Part B: Engineering, 2005; 37: 148-162. doi:10.1016/j.compositesb.2005.06.003.
Shabdin, M., Khajeh Ahmad Attari, N., Zargaran, M. Experimental Study on Seismic Behavior of Unreinforced Masonry (URM) Brick Walls Strengthened in the Boundaries with Shotcrete. Journal of Earthquake Engineering, 2019; 1-27. doi:10.1080/13632469.2019.1577763.
Sadeghi Marzaleh, A. Seismic in-plane behavior of post-tensioned existing clay brick masonry walls, (PhD Thesis). Zurich (CH): University of ETH Zurich; 2015.
Schultz, A. E., Scolforo, M. J. Overview of prestressed masonry. The Masonry Society Journal, 1991; 10: 6-21. doi:10.70803/001c.141160.
Kohail, M., Elshafie, H., Rashad, A., Okail, H. Behavior of post-tensioned dry-stack interlocking masonry shear walls under cyclic in-plane loading. Construction and Building Materials, 2019; 196: 539-554. doi:10.1016/j.conbuildmat.2018.11.149.
Soltanzadeh, G., Osman, H. B., Vafaei, M., Vahed, Y. K. Seismic retrofit of masonry wall infilled RC frames through external post-tensioning. Bulletin of Earthquake Engineering, 2018; 16: 1487-1510. doi:10.1007/s10518-017-0241-4.
Hassanli, R. Simplified approach to predict the flexural strength of unbonded post-tensioned masonry walls. 1st ed. Cham: Springer; 2019. doi:10.1007/978-3-319-93788-5_6.
Hassanli, R. Flexural Strength Prediction of Unbonded Post-tensioned Masonry Walls. 1st ed. Cham: Springer; 2018. doi:10.1007/978-3-319-93788-5_5.
Hassanli, R. Experimental Investigation of Unbonded Post-tensioned Masonry Walls. 1st ed. Cham: Springer; 2019. doi:10.1007/978-3-319-93788-5_7.
Hassanli, R. Strength and Seismic Performance Factors of Post-tensioned Masonry Walls. 1st ed. Cham: Springer; 2018. doi:10.1007/978-3-319-93788-5_3.
Laursen, P. T., Ingham, J. M. Structural testing of single-storey post-tensioned concrete masonry walls. The Masonry Society Journal, 2001; 19: 69-82. doi:10.70803/001c.142720.
Quiroz, A. P. Seismic vulnerability of historic masonry towers by external prestressing devices, (PhD Thesis). University of Naples Federico; 2011.
Babatunde, S. A. Review of strengthening techniques for masonry using fiber reinforced polymers. Composite Structures, 2017; 161: 246-255. doi:10.1016/j.compstruct.2016.10.132.
Seim, W., Pfeiffer, U. Local post-strengthening of masonry structures with fiber-reinforced polymers (FRPs). Construction and Building Materials, 2011; 25: 3393-3403. doi:10.1016/j.conbuildmat.2011.03.030.
Hong, K.-N., Yeon, Y.-M., Shim, W.-B., Kim, D.-H. Recovery Behavior of Fe-Based Shape Memory Alloys under Different Restraints. Applied Sciences, 2020; 10: 3441. doi:10.3390/app10103441.
Choi, E., Ostadrahimi, A., Kim, W. J., Seo, J. Prestressing effect of embedded Fe-based SMA wire on the flexural behavior of mortar beams. Engineering Structures, 2021; 227: 111472. doi:10.1016/j.engstruct.2020.111472.
Shahverdi, M., Michels, J., Czaderski, C., Motavalli, M. Iron-based shape memory alloy strips for strengthening RC members: Material behavior and characterization. Construction and Building Materials, 2018; 173: 586-599. doi:10.1016/j.conbuildmat.2018.04.057.
Shahverdi, M., Czaderski, C., Motavalli, M. Iron-based shape memory alloys for prestressed near-surface mounted strengthening of reinforced concrete beams. Construction and Building Materials, 2016; 112: 28-38. doi:10.1016/j.conbuildmat.2016.02.174.
Shahverdi, M., Czaderski, C., Annen, P., Motavalli, M. Strengthening of RC beams by iron-based shape memory alloy bars embedded in a shotcrete layer. Engineering Structures, 2016; 117: 263-273. doi:10.1016/j.engstruct.2016.03.023.
Izadi, M., Motavalli, M., Ghafoori, E. Iron-based shape memory alloy (Fe-SMA) for fatigue strengthening of cracked steel bridge connections. Construction and Building Materials, 2019; 227: 116800. doi:10.1016/j.conbuildmat.2019.116800.
Izadi, M., Ghafoori, E., Shahverdi, M., Motavalli, M., Maalek, S. Development of an iron-based shape memory alloy (Fe-SMA) strengthening system for steel plates. Engineering Structures, 2018; 174: 433-446. doi:10.1016/j.engstruct.2018.07.073.
Izadi, M., Ghafoori, E., Motavalli, M., Maalek, S. Iron-based shape memory alloy for the fatigue strengthening of cracked steel plates: Effects of re-activations and loading frequencies. Engineering Structures, 2018; 176: 953-967. doi:10.1016/j.engstruct.2018.09.021.
Izadi, M., Ghafoori, E., Hosseini, A., Motavalli, M., Maalek, S., Shahverdi, M. Feasibility of iron-based shape memory alloy strips for prestressed strengthening of steel plates. In: The fourth International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2017); 2017 Sep 13-15; Zurich, Switzerland. p. 260-268.
Rezapour, M., Ghassemieh, M., Motavalli, M., Shahverdi, M. Numerical Modeling of Unreinforced Masonry Walls Strengthened with Fe-Based Shape Memory Alloy Strips. Materials, 2021; 14: 2961. doi:10.3390/ma14112961.
Lagoudas, D. C. Shape memory alloys: modeling and engineering applications. 1st ed. New York (NY): Springer; 2008. doi:10.1007/978-0-387-47685-8.
Vermeltfoort, A. T., Raijmakers, T., Janssen, H. Shear tests on masonry walls. In: 6th North American Masonry Conference; 1993 Jun 6-9; Philadelphia, Pennsylvania. p. 1183-1193.
Lourenço, P. J. B. B. Computational strategies for masonry structures, (PhD Thesis). Delft (NL): Delft university Press; 1996.
Rezapour, M., Ghassemieh, M. Macroscopic modelling of coupled concrete shear wall. Engineering Structures, 2018; 169: 37-54. doi:10.1016/j.engstruct.2018.04.088.
Lee, J., Fenves, G. L. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 1998; 124: 892-900. doi:10.1061/(ASCE)0733-9399(1998)124:8(892).
Lubliner, J., Oliver, J., Oller, S., Oñate, E. A plastic-damage model for concrete. International Journal of Solids and Structures, 1989; doi:10.1016/0020-7683(89)90050-4.
Mander, J. B., Priestley, M. J., Park, R. Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 1988; 114: 1804-1826. doi:10.1061/(ASCE)0733-9445(1988)114:8(1804).
Selby, R. G., Vecchio, F. J. A constitutive model for analysis of reinforced concrete solids. Canadian Journal of Civil Engineering, 1997; 24: 460-470. doi:10.1139/l96-135.
Rezapour, M. , & Ghassemieh, M. (2025). Numerical Investigation of Fe-SMA Strengthened Masonry Walls under Lateral Loading. Civil Engineering and Applied Solutions, 1(4), 1-15. doi: 10.22080/ceas.2025.29594.1022
MLA
Moein Rezapour; Mehdi Ghassemieh. "Numerical Investigation of Fe-SMA Strengthened Masonry Walls under Lateral Loading", Civil Engineering and Applied Solutions, 1, 4, 2025, 1-15. doi: 10.22080/ceas.2025.29594.1022
HARVARD
Rezapour, M., Ghassemieh, M. (2025). 'Numerical Investigation of Fe-SMA Strengthened Masonry Walls under Lateral Loading', Civil Engineering and Applied Solutions, 1(4), pp. 1-15. doi: 10.22080/ceas.2025.29594.1022
CHICAGO
M. Rezapour and M. Ghassemieh, "Numerical Investigation of Fe-SMA Strengthened Masonry Walls under Lateral Loading," Civil Engineering and Applied Solutions, 1 4 (2025): 1-15, doi: 10.22080/ceas.2025.29594.1022
VANCOUVER
Rezapour, M., Ghassemieh, M. Numerical Investigation of Fe-SMA Strengthened Masonry Walls under Lateral Loading. Civil Engineering and Applied Solutions, 2025; 1(4): 1-15. doi: 10.22080/ceas.2025.29594.1022