Investigation of Crack Growth Behavior in Heterogeneous Asphalt Concrete Using FEM Modeling Based on Random Aggregate Generation and Distribution Algorithms

Document Type : Original Article

Authors

1 Department of Civil Engineering, University of Jiroft, Jiroft, Iran

2 Department of Civil Engineering, University of Bonab, Bonab, Iran

3 Department of Civil Engineering, University of Hormozgan, Hormozgan, Iran

Abstract

This study investigates the fracture behavior of asphalt concrete by modeling it as a multiphase material composed of aggregates and mastic. A series of two-dimensional finite element models was developed using a random aggregate generation and distribution algorithm to simulate the heterogeneous microstructure of asphalt mixtures. The generated specimens were analyzed in ABAQUS software, focusing on the evaluation of Mode I and Mode II stress intensity factors (SIFs) and stress distribution in single-edge notched beam (SENB) configurations. The simulation results demonstrate that the spatial distribution of aggregates plays a significant role in determining both the mode and magnitude of SIFs. While the Poisson ratios of the constituents had a negligible effect, their elastic moduli showed a considerable influence on fracture response. As the crack length increased, the stress field became more localized, indicating a shift from distributed elastic deformation to concentrated fracture. Additionally, regions with lower stiffness acted as stress amplifiers, guiding the crack path through weaker zones and intensifying local stress concentrations. These findings underscore the importance of accounting for microstructural heterogeneity in the fracture analysis and design of asphalt mixtures.

Keywords

Main Subjects


  1. Sarbijan, M. J., Asadi, S., Hamze-Ziabari, S. M. Formulation of stress intensity factor under pure bending condition in multilayer pavements using numerical study and model tree approach. Fatigue & Fracture of Engineering Materials & Structures, 2024; 47: 2506-2520. doi:10.1111/ffe.14314.
  2. Kouzegaran, S., Oliaei, M. Numerical Analysis of the Cellular Geosynthetics Performance in Unpaved Roads and Influencing Factors. Transportation Infrastructure Geotechnology, 2025; 12: 108. doi:10.1007/s40515-024-00500-9.
  3. Aliha, M. R. M., Ziari, H., Sobhani Fard, E., Jebalbarezi Sarbijan, M. Heterogeneity effect on fracture parameters of a multilayer asphalt pavement structure containing a top-down crack and subjected to moving traffic loading. Fatigue & Fracture of Engineering Materials & Structures, 2021; 44: 1349-1371. doi:10.1111/ffe.13434.
  4. Aliha, M. R. M., Ziari, H., Mojaradi, B., Sarbijan, M. J. Heterogeneity effects on mixed-mode I/II stress intensity factors and fracture path of laboratory asphalt mixtures in the shape of SCB specimen. Fatigue & Fracture of Engineering Materials & Structures, 2020; 43: 586-604. doi:10.1111/ffe.13154.
  5. Teng, G., Zheng, C., Chen, X., Lan, X., Zhu, Y., Shan, C. Numerical fracture investigation of single-edge notched asphalt concrete beam based on random heterogeneous FEM model. Construction and Building Materials, 2021; 304: 124581. doi:10.1016/j.conbuildmat.2021.124581.
  6. Chen, J., Ouyang, X., Sun, X. Numerical Investigation of Asphalt Concrete Fracture Based on Heterogeneous Structure and Cohesive Zone Model. Applied Sciences, 2022; 12: doi:10.3390/app122111150.
  7. Shi, L., Wang, Y., Li, H., Liang, H., Lin, B., Wang, D. Recycled asphalt mixture's discrete element model-based composite structure and mesoscale-mechanical properties. Case Studies in Construction Materials, 2023; 18: e01987. doi:10.1016/j.cscm.2023.e01987.
  8. Zhang, L., Zhou, S., Xiong, Z., Mo, Z., Lu, Q., Hong, J. Research on the crack resistance of semi-flexible pavement mixture based on meso-heterogeneous model. Construction and Building Materials, 2024; 411: 134495. doi:10.1016/j.conbuildmat.2023.134495.
  9. Chen, A., Airey, G. D., Thom, N., Li, Y., Wan, L. Simulation of micro-crack initiation and propagation under repeated load in asphalt concrete using zero-thickness cohesive elements. Construction and Building Materials, 2022; 342: 127934. doi:10.1016/j.conbuildmat.2022.127934.
  10. Lu, D. X., Nguyen, N. H. T., Bui, H. H. A cohesive viscoelastic-elastoplastic-damage model for DEM and its applications to predict the rate- and time-dependent behaviour of asphalt concretes. International Journal of Plasticity, 2022; 157: 103391. doi:10.1016/j.ijplas.2022.103391.
  11. Wu, H., Li, Q., Song, W., Chen, X., Wada, S. A., Liao, H. Meso-mechanical characterization on thermal damage and low-temperature cracking of asphalt mixtures. Engineering Fracture Mechanics, 2025; 316: 110862. doi:10.1016/j.engfracmech.2025.110862.
  12. Xue, B., Pei, J., Zhou, B., Zhang, J., Li, R., Guo, F. Using random heterogeneous DEM model to simulate the SCB fracture behavior of asphalt concrete. Construction and Building Materials, 2020; 236: 117580. doi:10.1016/j.conbuildmat.2019.117580.
  13. Gao, L., Zhou, Y., Jiang, J., Yang, Y., Kong, H. Mix-mode fracture behavior in asphalt concrete: Asymmetric semi-circular bending testing and random aggregate generation-based modelling. Construction and Building Materials, 2024; 438: 137225. doi:10.1016/j.conbuildmat.2024.137225.
  14. Du, C., Sun, Y., Chen, J., Gong, H., Wei, X., Zhang, Z. Analysis of cohesive and adhesive damage initiations of asphalt pavement using a microstructure-based finite element model. Construction and Building Materials, 2020; 261: 119973. doi:10.1016/j.conbuildmat.2020.119973.
  15. Sun, Y., Du, C., Gong, H., Li, Y., Chen, J. Effect of temperature field on damage initiation in asphalt pavement: A microstructure-based multiscale finite element method. Mechanics of Materials, 2020; 144: 103367. doi:10.1016/j.mechmat.2020.103367.
  16. Kim, H., Buttlar, W. G. Multi-scale fracture modeling of asphalt composite structures. Composites Science and Technology, 2009; 69: 2716-2723. doi:10.1016/j.compscitech.2009.08.014.
  17. Kim, H., Wagoner Michael, P., Buttlar William, G. Simulation of Fracture Behavior in Asphalt Concrete Using a Heterogeneous Cohesive Zone Discrete Element Model. Journal of Materials in Civil Engineering, 2008; 20: 552-563. doi:10.1061/(ASCE)0899-1561(2008)20:8(552).
  18. Kim, H., Wagoner, M. P., Buttlar, W. G. Micromechanical fracture modeling of asphalt concrete using a single-edge notched beam test. Materials and Structures, 2009; 42: 677-689. doi:10.1617/s11527-008-9412-8.
  19. Li, Y., Metcalf John, B. Two-Step Approach to Prediction of Asphalt Concrete Modulus from Two-Phase Micromechanical Models. Journal of Materials in Civil Engineering, 2005; 17: 407-415. doi:10.1061/(ASCE)0899-1561(2005)17:4(407).
  20. American Association of State Highway and Transportation Officials (AASHTO). AASHTO TP105-13: Standard Method of Test for Determining the Fracture Energy of Asphalt Mixtures Using the Semicircular Bend Geometry (SCB). Washington, D.C. (US): AASHTO;
  21. Mull, M. A., Stuart, K., Yehia, A. Fracture resistance characterization of chemically modified crumb rubber asphalt pavement. Journal of Materials Science, 2002; 37: 557-566. doi:10.1023/A:1013721708572.
  22. Eissa, E. A., Kazi, A. Relation between static and dynamic Young's moduli of rocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988; 25: 479-482. doi:10.1016/0148-9062(88)90987-4.
  23. Alanazi, N., Kassem, E., Grasley, Z., Bayomy, F. Evaluation of viscoelastic Poisson’s ratio of asphalt mixtures. International Journal of Pavement Engineering, 2019; 20: 1231-1238. doi:10.1080/10298436.2017.1398550.
  24. Gercek, H. Poisson's ratio values for rocks. International Journal of Rock Mechanics and Mining Sciences, 2007; 44: 1-13. doi:10.1016/j.ijrmms.2006.04.011.
  25. Williams, M. L. On the Stress Distribution at the Base of a Stationary Crack. Journal of Applied Mechanics, 2021; 24: 109-114. doi:10.1115/1.4011454.
  26. Anderson, T. L. Fracture Mechanics: Fundamentals and applications. 4th ed. Boca Raton (FL): CRC Press; 2017. doi:10.1201/9781315370293.
  27. Lawn, B. Fracture of Brittle Solids. 2nd ed. Cambridge (UK): Cambridge University Press; 1993. doi:10.1017/CBO9780511623127.
  28. Broek, D. Elementary engineering fracture mechanics. 1st ed. Berlin (DE): Springer Science & Business Media; 1982. doi:10.1007/978-94-009-4333-9.
  29. Christensen, R. M. Mechanics of Composite Materials. 1st ed. Mineola (NY): Dover Publications; 2005.
Volume 2, Issue 1
January 2026
Pages 46-57
  • Receive Date: 21 June 2025
  • Revise Date: 31 July 2025
  • Accept Date: 03 August 2025
  • First Publish Date: 03 August 2025