Various structural design codes for reinforced and prestressed concrete propose different equations and recommendations for the parameters of the rectangular stress block. However, these formulations are often valid only for a specific ultimate strain and are primarily based on concrete with a compressive strength below 50 MPa. In this study, with the aim of evaluating the accuracy and adequacy of these parameters for high-strength prestressed concrete, the stress-strain curve and equivalent stress block parameters were calculated throughout the entire loading process. To achieve this, a simplified third-degree polynomial stress-strain relationship was proposed and compared with experimental data for both compressed (high-strength) and non-compressed (normal-strength) concretes. The results demonstrated that the proposed model has acceptable accuracy in predicting the actual behavior of both compressed and non-compressed concretes, and it can be used to derive instantaneous parameters of the stress block. The obtained stress block parameters were compared with code-based relationships and previous studies, revealing that certain code assumptions require modification when applied to high-strength concrete.
Gusella, F. Effect of the plastic rotation randomness on the moment redistribution in reinforced concrete structures. Engineering Structures, 2022; 252: 113652. doi:10.1016/j.engstruct.2021.113652.
Nemati, M., Aminian, A., Rahimi, S., Nematzadeh, M., Jafarzadeh-Taleshi, M., Thai, H.-T. Compressive behavior of prestressed SFRCFST stub columns after heating: Effect of fresh concrete compression technique. Case Studies in Construction Materials, 2025; 23: e04968. doi:10.1016/j.cscm.2025.e04968.
Nazari, A., Toufigh, V. Effects of elevated temperatures and re-curing on concrete containing rice husk ash. Construction and Building Materials, 2024; 439: 137277. doi:10.1016/j.conbuildmat.2024.137277.
Razavi, M., Rahimi, M., Hasanpoor Tichi, A., Nematzadeh, M. Synergistic effects of recycled nylon granules and bacterial nano-cellulose in lightweight concrete: Experiments and predictions. Construction and Building Materials, 2025; 493: 143124. doi:10.1016/j.conbuildmat.2025.143124.
Tarkhan, M., Hosseini-Poul, S.-A., Nematzadeh, M., Shokrollah-Hefzabad, A. Evaluation of post-heating flexural behavior of concrete incorporating ceramic waste and electric arc furnace slag: Experimental and predictive study, and carbon footprint assessment. Construction and Building Materials, 2025; 494: 143207. doi:10.1016/j.conbuildmat.2025.143207.
Nematzadeh, M., Nazari, A., Tayebi, M. Post-fire impact behavior and durability of steel fiber-reinforced concrete containing blended cement–zeolite and recycled nylon granules as partial aggregate replacement. Archives of Civil and Mechanical Engineering, 2021; 22: 5. doi:10.1007/s43452-021-00324-1.
Whitney, C. S. Design of reinforced concrete members under flexure or combined flexure and direct compression. ACI Journal Proceedings, 1937; 33: 483-498. doi:10.14359/8429.
American Concrete Institute (ACI). ACI 318-25: Building Code for Structural Concrete—Code Requirements and Commentary. Farmington Hills (MI): ACI; 2025.
Mattock, A. H., Kriz, L. B., Hognestad, E. Rectangular concrete stress distribution in ultimate strength design. ACI Journal Proceedings, 1961; 57: 875-928. doi:10.14359/8051.
Li, B. Strength and Ductility of Reinforced Concrete Members and Frames Constructed Using High Strength Concrete(PhD Thesis). Christchurch (NZ): University of Canterbury; 1993.
Oztekin, E., Pul, S., Husem, M. Determination of rectangular stress block parameters for high performance concrete. Engineering Structures, 2003; 25: 371-376. doi:10.1016/S0141-0296(02)00172-4.
Ozbakkaloglu, T., Saatcioglu, M. Rectangular stress block for high-strength concrete. ACI Structural Journal, 2004; 101: 475-483. doi:10.14359/13333.
Mertol, H. C., Rizkalla, S., Zia, P., Mirmiran, A. Flexural Design using High-Strength Concrete up to 20 KSI. In: HPC: Build Fast, Build to Last. The 2006 Concrete Bridge Conference; 2006 May 7-10; Nevada, United States. p. 1-18.
Ho, J., Peng, J. Strain gradient effects on flexural strength design of normal-strength concrete columns. Engineering Structures, 2011; 33: 18-31. doi:10.1016/j.engstruct.2010.09.014.
Van Zijl, G., Mbewe, P. Flexural modelling of steel fibre-reinforced concrete beams with and without steel bars. Engineering Structures, 2013; 53: 52-62. doi:10.1016/j.engstruct.2013.03.036.
Prachasaree, W., Limkatanyu, S., Hawa, A., Samakrattakit, A. Development of equivalent stress block parameters for fly-ash-based geopolymer concrete. Arabian journal for science and engineering, 2014; 39: 8549-8558. doi:10.1007/s13369-014-1447-2.
Maruyama, I., Sasano, H. Strain and crack distribution in concrete during drying. Materials and Structures, 2014; 47: 517-532. doi:10.1617/s11527-013-0076-7.
Nematzadeh, M., Naghipour, M. Compressive strength and modulus of elasticity of freshly compressed concrete. Construction and Building Materials, 2012; 34: 476-485. doi:10.1016/j.conbuildmat.2012.02.055.
British Standards Institution. EN 1992-1-2: Eurocode 2: Design of concrete structures. Ispra (IT): EN; 2004.
Canadian Standards Association (CSA). CSA A23.3:19: Design of Concrete Structures. Longueuil (QC): CSA; 2019.
New Zealand Standards Association. NZS 3101.1: Concrete structures standard - The design of concrete structures. Wellington (NZ): NZS; 2006.
Attard, M. M., Stewart, M. G. A two parameter stress block for high-strength concrete. ACI Structural Journal, 1998; 95: 305-317. doi:10.14359/548.
Ibrahim, H. H. H., MacGregor, J. G. Modification of the ACI rectangular stress block for high-strength concrete. ACI Structural Journal, 1997; 94: 40-48. doi:10.14359/459.
Li, B., Park, R., Tanaka, H. Effect of confinement on the behaviour of high strength concrete columns under seismic loading. In: Proceedings, Pacific conference on earthquake engineering; 1991 Nov 20-23; Auckland, New Zealand. p. 67-78.
Azizinamini, A., Baum Kuska, S. S., Brungardt, P., Hatfield, E. Seismic behavior of square high-strength concrete columns. ACI Structural Journal, 1994; 91: 336-345. doi:10.14359/4362.
Maghsodian, S. (2026). Determination of Moment Parameters of Rectangular Stress Block for High-Strength Prestressed Concrete. Civil Engineering and Applied Solutions, 2(1), 22-32. doi: 10.22080/ceas.2025.29949.1040
MLA
Shahram Maghsodian. "Determination of Moment Parameters of Rectangular Stress Block for High-Strength Prestressed Concrete", Civil Engineering and Applied Solutions, 2, 1, 2026, 22-32. doi: 10.22080/ceas.2025.29949.1040
HARVARD
Maghsodian, S. (2026). 'Determination of Moment Parameters of Rectangular Stress Block for High-Strength Prestressed Concrete', Civil Engineering and Applied Solutions, 2(1), pp. 22-32. doi: 10.22080/ceas.2025.29949.1040
CHICAGO
S. Maghsodian, "Determination of Moment Parameters of Rectangular Stress Block for High-Strength Prestressed Concrete," Civil Engineering and Applied Solutions, 2 1 (2026): 22-32, doi: 10.22080/ceas.2025.29949.1040
VANCOUVER
Maghsodian, S. Determination of Moment Parameters of Rectangular Stress Block for High-Strength Prestressed Concrete. Civil Engineering and Applied Solutions, 2026; 2(1): 22-32. doi: 10.22080/ceas.2025.29949.1040