This study presents a detailed finite element investigation of concrete cylinders confined with shape memory alloy (SMA) windings, focusing on the combined effects of winding pitch and temperature. The main objective is to evaluate how geometric configuration and thermal activation influence the compressive strength, ductility, and energy dissipation of confined concrete. The nonlinear response was modeled in ABAQUS using the Concrete Damaged Plasticity (CDP) framework for the concrete core and a user-defined FORTRAN subroutine to simulate the reversible austenite–martensite transformation of the SMA. The numerical model was validated against laboratory data, showing strong agreement between simulated and experimental stress–strain curves. Parametric analyses were performed for winding pitches of 5.3, 9, and 16 mm under temperatures of 30, 50, 70, and 90 °C. The results demonstrate that decreasing the winding pitch substantially enhances post-peak stability and energy absorption, while higher SMA temperatures improve confinement efficiency at large strains without significantly altering peak strength. The study confirms that tighter and thermally activated SMA windings provide more uniform stress distribution and superior energy dissipation. These findings highlight the potential of SMA-based active confinement as a reliable and adaptive strategy for seismic retrofitting and impact-resistant design of concrete structures.
Song, G., Ma, N., Li, H.-N. Applications of shape memory alloys in civil structures. Engineering structures, 2006; 28: 1266-1274. doi:10.1016/j.engstruct.2005.12.010.
Lagoudas, D. C. Shape Memory Alloys. 1st ed. New York (NY): Springer New York; 2008. doi:10.1007/978-0-387-47685-8.
Yamauchi, K., Ohkata, I., Tsuchiya, K., Miyazaki, S. Shape Memory and Superelastic Alloys: Applications and Technologies. 1st ed. Amsterdam (NL): Elsevier; 2011. doi:10.1533/9780857092625.
Rashed, G. Seismic vibration control of frame structure using shape memory alloy, (PhD Thesis). Dhaka (BD): Bangladesh University of Engineering and Technology; 2013.
Choi, E., Nam, T.-h., Cho, S.-C., Chung, Y.-S., Park, T. The behavior of concrete cylinders confined by shape memory alloy wires. Smart Materials and Structures, 2008; 17: 065032. doi:10.1088/0964-1726/17/6/065032.
Shin, M., Andrawes, B. Lateral Cyclic Behavior of Reinforced Concrete Columns Retrofitted with Shape Memory Spirals and FRP Wraps. Journal of Structural Engineering, 2011; 137: 1282-1290. doi:10.1061/(ASCE)ST.1943-541X.0000364.
Andrawes, B., Shin, M., Wierschem, N. Active Confinement of Reinforced Concrete Bridge Columns Using Shape Memory Alloys. Journal of Bridge Engineering, 2010; 15: 81-89. doi:10.1061/(ASCE)BE.1943-5592.000003.
Gholampour, A., Ozbakkaloglu, T. Shape memory alloy (SMA)-confined normal-and high-strength concrete. In: 20th International Conference on Composite Structures: proceedings; 2017; Bologna, Italy. p. 114.
Gholampour, A., Ozbakkaloglu, T. Understanding the compressive behavior of shape memory alloy (SMA)-confined normal-and high-strength concrete. Composite Structures, 2018; 202: 943-953. doi:10.1016/j.compstruct.2018.05.008.
Park, J., Choi, E., Park, K., Kim, H.-T. Comparing the cyclic behavior of concrete cylinders confined by shape memory alloy wireor steel jackets. Smart Materials and Structures, 2011; 20: 094008. doi:10.1088/0964-1726/20/9/094008.
Lee, T., Jeong, S., Woo, U., Choi, H., Jung, D. Experimental Evaluation of Shape Memory Alloy Retrofitting Effect for Circular Concrete Column Using Ultrasonic Pulse Velocity. International Journal of Concrete Structures and Materials, 2023; 17: 13. doi:10.1186/s40069-022-00574-0.
Tran, H., Balandraud, X., Destrebecq, J. Improvement of the mechanical performances of concrete cylinders confined actively or passively by means of SMA wires. Archives of Civil and Mechanical Engineering, 2015; 15: 292-299. doi:10.1016/j.acme.2014.04.009.
Miłek, T. Experimental Determination of Material Boundary Conditions for Computer Simulation of Sheet Metal Deep Drawing Processes. Advances in Science and Technology. Research Journal, 2023; 17: 360-373. doi:10.12913/22998624/172364.
Lee, J., Fenves, G. L. Plastic-Damage Model for Cyclic Loading of Concrete Structures. Journal of engineering mechanics, 1998; 124: 892-900. doi:10.1061/(ASCE)0733-9399(1998)124:8(892.
Martínez-Rueda, J. E., Elnashai, A. S. Confined concrete model under cyclic load. Materials and structures, 1997; 30: 139-147. doi:10.1007/BF02486385.
Dolce, M., Cardone, D. Mechanical behaviour of shape memory alloys for seismic applications 2. Austenite NiTi wires subjected to tension. International journal of mechanical sciences, 2001; 43: 2657-2677. doi:10.1016/S0020-7403(01)00050-9.
Dolce, M., Cardone, D. Mechanical behaviour of shape memory alloys for seismic applications 1. Martensite and austenite NiTi bars subjected to torsion. International journal of mechanical sciences, 2001; 43: 2631-2656. doi:10.1016/S0020-7403(01)00049-2.
Rezapour, M., Ghassemieh, M., Motavalli, M., Shahverdi, M. Numerical Modeling of Unreinforced Masonry Walls Strengthened with Fe-Based Shape Memory Alloy Strips. Materials, 2021; 14: 2961. doi:10.3390/ma14112961.
Ghassemieh, M., Rezapour, M., Sadeghi, V. Effectiveness of the shape memory alloy reinforcement in concrete coupled shear walls. Journal of Intelligent Material Systems and Structures, 2017; 28: 640-652. doi:10.1177/1045389X16657200.
Ocel, J., DesRoches, R., Leon, R. T., Hess, W. G., Krumme, R., Hayes, J. R., Sweeney, S. Steel Beam-Column Connections Using Shape Memory Alloys. Journal of Structural Engineering, 2004; 130: 732-740. doi:10.1061/(ASCE)0733-9445(2004)130:5(73).
Rezapour, M., Ghassemieh, M. Numerical Investigation of Fe-SMA Strengthened Masonry Walls under Lateral Loading. Civil Engineering and Applied Solutions, 2025; 1: 1-15. doi:10.22080/ceas.2025.29594.1022.
Rezapour, M., Ghassemieh, M. Investigating the influence of superelastic dampers on the behavior of double-sided knee braces. Journal of Steel & Structure, 2024; 18: 69-85.
Banihashem, S. M., Rezapour, M., Attarnejad, R., Sanei, M. Evaluating the Effectiveness of a New Self‐Centering Damper on a Knee Braced Frame. Shock and Vibration, 2023; 2023: 6335011. doi:10.1155/2023/6335011.
Hashemvand, A. Investigation of Composite Compressive Properties of Concrete Confined with Shape Memory Alloys, (PhD Thesis). Tehran (IR): Tehran university; 2015.
Ghassemieh, M. , & Rezapour, M. (2026). Finite Element Modeling of SMA-Confined Concrete: Influence of Winding Pitch and Temperature on Strength and Energy Dissipation. Civil Engineering and Applied Solutions, 2(1), 33-45. doi: 10.22080/ceas.2025.30055.1042
MLA
Mehdi Ghassemieh; Moein Rezapour. "Finite Element Modeling of SMA-Confined Concrete: Influence of Winding Pitch and Temperature on Strength and Energy Dissipation", Civil Engineering and Applied Solutions, 2, 1, 2026, 33-45. doi: 10.22080/ceas.2025.30055.1042
HARVARD
Ghassemieh, M., Rezapour, M. (2026). 'Finite Element Modeling of SMA-Confined Concrete: Influence of Winding Pitch and Temperature on Strength and Energy Dissipation', Civil Engineering and Applied Solutions, 2(1), pp. 33-45. doi: 10.22080/ceas.2025.30055.1042
CHICAGO
M. Ghassemieh and M. Rezapour, "Finite Element Modeling of SMA-Confined Concrete: Influence of Winding Pitch and Temperature on Strength and Energy Dissipation," Civil Engineering and Applied Solutions, 2 1 (2026): 33-45, doi: 10.22080/ceas.2025.30055.1042
VANCOUVER
Ghassemieh, M., Rezapour, M. Finite Element Modeling of SMA-Confined Concrete: Influence of Winding Pitch and Temperature on Strength and Energy Dissipation. Civil Engineering and Applied Solutions, 2026; 2(1): 33-45. doi: 10.22080/ceas.2025.30055.1042