Many older reinforced concrete (RC) buildings designed under outdated seismic codes exhibit inadequate shear capacity, leading to brittle column failures during earthquakes. Accurate prediction of shear strength is therefore essential for nonlinear seismic assessment. This study develops an analytical–computational framework using artificial neural networks (ANNs) to model the nonlinear flexural–shear behavior of RC columns subjected to constant axial loads. A fiber-based flexural model was formulated, while shear strength was estimated through a Mohr’s circle–based approach enhanced with a ductility-dependent degradation parameter. An ANN trained on 164 experimental column tests provided highly accurate shear predictions, outperforming existing analytical models. The framework was validatated against independent experiments confirmed its reliability. The proposed ANN-based approach offers a practical tool for seismic performance evaluation and retrofit design of deficient RC columns.
Sezen, H. Seismic behavior and modeling of reinforced concrete building columns (PhD Thesis). Berkeley (CA): University of California Berkley; 2002.
Shayanfar, J., Akbarzadeh Bengar, H. Nonlinear analysis of RC frames considering shear behaviour of members under varying axial load. Bulletin of Earthquake Engineering, 2017; 15: 2055-2078. doi:10.1007/s10518-016-0060-z.
Shayanfar, J., Bengar, H. A., Parvin, A. Analytical prediction of seismic behavior of RC joints and columns under varying axial load. Engineering Structures, 2018; 174: 792-813. doi:10.1016/j.engstruct.2018.07.103.
Shayanfar, J., Hemmati, A., Bengar, H. A. A simplified numerical model to simulate RC beam–column joints collapse. Bulletin of Earthquake Engineering, 2019; 17: 803-844. doi:10.1007/s10518-018-0472-z.
Shayanfar, J., Bengar, H. A. Numerical model to simulate shear behaviour of RC joints and columns. Computers and Concrete, An International Journal, 2016; 18: 877-901. doi:10.12989/cac.2016.18.4.877.
Shayanfar, J., Akbarzadeh Bengar, H., Niroomandi, A. A proposed model for predicting nonlinear behavior of RC joints under seismic loads. Materials & Design, 2016; 95: 563-579. doi:10.1016/j.matdes.2016.01.098.
John, S. K., Cascardi, A., Verre, S., Nadir, Y. RC-columns subjected to lateral cyclic force with different FRCM-strengthening schemes: experimental and numerical investigation. Bulletin of Earthquake Engineering, 2025; 23: 1561-1590. doi:10.1007/s10518-025-02100-5.
Shayanfar, J., Barros Joaquim, A. O., Rezazadeh, M. Stress–Strain Model for FRP-Confined Circular Concrete Columns Developing Structural Softening Behavior. Journal of Composites for Construction, 2024; 28: 04023065. doi:10.1061/JCCOF2.CCENG-4364.
Işık, E., Radu, D., Harirchian, E., Avcil, F., Arkan, E., Büyüksaraç, A., Hadzima-Nyarko, M. Failures in Reinforced-Concrete Columns and Proposals for Reinforcement Solutions: Insights from the 2023 Kahramanmaraş Earthquakes. Buildings, 2025; 15: 1535.
Nematzadeh, M., Mousavimehr, M., Shayanfar, J., Omidalizadeh, M. Eccentric compressive behavior of steel fiber-reinforced RC columns strengthened with CFRP wraps: Experimental investigation and analytical modeling. Engineering Structures, 2021; 226: 111389. doi:10.1016/j.engstruct.2020.111389.
Shayanfar, J., Barros, J. A. O., Rezazadeh, M. Analytical model to predict axial stress-strain behavior of heat-damaged unreinforced concrete columns wrapped by FRP jacket. Engineering Structures, 2023; 289: 116244. doi:10.1016/j.engstruct.2023.116244.
Wang, J., Xiao, H., Lu, L., Yang, J., Lu, S., Shayanfar, J. Axial stress-strain model for concrete in partially FRP wrapped reinforced concrete columns. Construction and Building Materials, 2024; 416: 135028. doi:10.1016/j.conbuildmat.2024.135028.
Shayanfar, J., Barros Joaquim, A. O., Abedi, M., Rezazadeh, M. Unified Compressive Strength and Strain Ductility Models for Fully and Partially FRP-Confined Circular, Square, and Rectangular Concrete Columns. Journal of Composites for Construction, 2023; 27: 04023053. doi:10.1061/JCCOF2.CCENG-4336.
Zhao, Y., Zhang, X., Zhuang, X. Seismic performance of squared lap-spliced RC columns strengthened by active confinement technique under quasi-static cyclic load. Structures, 2025; 74: 108622. doi:10.1016/j.istruc.2025.108622.
Shayanfar, J., Barros, J. A. O., Rezazadeh, M. Cross-sectional and confining system unification on peak compressive strength of FRP confined concrete. Structural Concrete, 2023; 24: 1531-1545. doi:10.1002/suco.202200105.
Baldwin, J., Viest, I. Effect of Axial Compression on Shear Strength of Reinforced Concrete Frame Members. ACI Journal Proceedings, 1958; 55: 635-654. doi:10.14359/11379.
Yamad, M. Shear Strength, Deformation and Explosion of Reinforced Concrete Short Columns. American Concrete Institute (ACI), 1974; 42: 617-640. doi:10.14359/17304.
Elzanaty, A. H., Nilson, A. H., Slate, F. O. Shear capacity of reinforced concrete beams using high-strength concrete. In: ACI Journal Proceedings; 1986; p. 290-296. doi:10.14359/10432.
Wight James, K., Sozen Mete, A. Strength Decay of RC Columns under Shear Reversals. Journal of the Structural Division, 1975; 101: 1053-1065. doi:10.1061/JSDEAG.0004048.
Woodward Kyle, A., Jirsa James, O. Influence of Reinforcement on RC Short Column Lateral Resistance. Journal of Structural Engineering, 1984; 110: 90-104. doi:10.1061/(ASCE)0733-9445(1984)110:1(90).
Ascheim, M., Moehle, J. Shear strength and deformability of RC bridge columns subjected to inelastic cyclic displacements. Berkeley (CA): Earthquake Engineering Research Center, University of California, Berkeley; 1992. Report No.: UCB/EERC-92/04.
Ghee, A. B., Priestley, M. J. N., Paulay, T. Seismic Shear Strength of Circular Reinforced Concrete Columns. ACI Structural Journal, 1989; 86: 45-59. doi:10.14359/2634.
Yuk-Lung Wong, T. P., Priestley, M. J. N. Response of Circular Reinforced Concrete Columns to Multi-Directional Seismic Attack. ACI Structural Journal, 1993; 90: 180-191. doi:10.14359/4124.
Bengar, H. A., Kiadehi, M. A., Shayanfar, J., Nazari, M. Effective flexural rigidities for RC beams and columns with steel fiber. Steel and Composite Structures, An International Journal, 2020; 34: 453-465. doi:10.12989/scs.2020.34.3.453.
Lynn, A. C. Seismic evaluation of existing reinforced concrete building columns (PhD Thesis). Berkeley (CA): University of California, Berkeley; 2001.
Pan, Z., Li, B. Truss-Arch Model for Shear Strength of Shear-Critical Reinforced Concrete Columns. Journal of Structural Engineering, 2013; 139: 548-560. doi:10.1061/(ASCE)ST.1943-541X.0000677.
Duong, K. V., Sheikh, S. A., Vecchio, F. J. Seismic behavior of shear-critical reinforced concrete frame: Experimental investigation. ACI Structural Journal, 2007; 104: 304-313. doi:10.14359/18620.
Lee, J.-Y., Watanabe, F. Shear deterioration of reinforced concrete beams subjected to reversed cyclic loading. ACI Structural Journal, 2003; 100: 480-489. doi:10.14359/12657.
Lee, J. Y., Watanabe, F. Predicting the longitudinal axial strain in the plastic hinge regions of reinforced concrete beams subjected to reversed cyclic loading. Engineering Structures, 2003; 25: 927-939. doi:10.1016/S0141-0296(03)00026-9.
Ho, J. C. M., Pam, H. J. Inelastic design of low-axially loaded high-strength reinforced concrete columns. Engineering Structures, 2003; 25: 1083-1096. doi:10.1016/S0141-0296(03)00050-6.
Moretti, M., Tassios, T. P. Behaviour of short columns subjected to cyclic shear displacements: Experimental results. Engineering Structures, 2007; 29: 2018-2029. doi:10.1016/j.engstruct.2006.11.001.
Pendyala, R. S., Mendis, P. Experimental study on shear strength of high-strength concrete beams. ACI Structural Journal, 2000; 97: 564-571. doi:10.14359/7421.
American Concrete Institute (ACI). ACI 318-08: Building Code Requirements for Structural Concrete and Commentary. Farmington Hills (MI): ACI; 2008. doi:10.14359/51716937.
Federal Emergency Management Agency (FEMA). FEMA Publication 273: NEHRP Guidelines for the seismic rehabilitation of buildings. Washington, D.C. (US): FEMA; 1997.
New Zealand Standard (NZS). NZS 3101.1: Design of concrete structures. Wellington (NZ): NZS; 2006.
Akbarzadeh Bengar, H., Abdollahtabar, M., Shayanfar, J. Predicting the Ductility of RC Beams Using Nonlinear Regression and ANN. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2016; 40: 297-310. doi:10.1007/s40996-016-0033-0.
Akbarzadeh Bengar, H., Shayanfar, J. Seismic performance of RC frames joints retrofitted by CFRP composites. In: Proceedings of the 2th International and the 6th National Conference on Earthquake & Structures; 2015 Oct 14–15; Kerman, Iran. p. 1-10.
Tariq, M., Khan, A., Ullah, A., Shayanfar, J., Niaz, M. Improved Shear Strength Prediction Model of Steel Fiber Reinforced Concrete Beams by Adopting Gene Expression Programming. Materials, 2022; 15: 3758. doi:10.3390/ma15113758.
Tariq, M., Khan, A., Shayanfar, J., Hanif, M. U., Ullah, A. A regression model for predicting the shear strength of RC knee joint subjected to opening and closing moment. Journal of Building Engineering, 2021; 41: 102727. doi:10.1016/j.jobe.2021.102727.
Akbarzadeh Bengar, H., Shayanfar, J., Seyedpoor, S. M. An artificial neural network (ANN) model for predicting themoment-rotation of exterior RC beam–column jointsstrengthened by CFRP composites. In: Proceedings of the 2th International and the 6th National Conference on Earthquake & Structures; 2015 Oct 14–15; Kerman, Iran. p. 11-20.
Abedi, M., Shayanfar, J., Al-Jabri, K. Infrastructure damage assessment via machine learning approaches: a systematic review. Asian Journal of Civil Engineering, 2023; 24: 3823-3852. doi:10.1007/s42107-023-00748-5.
Park, H.-G., Yu, E.-J., Choi, K.-K. Shear-strength degradation model for RC columns subjected to cyclic loading. Engineering Structures, 2012; 34: 187-197. doi:10.1016/j.engstruct.2011.08.041.
Chen, W. F. Plasticity in Reinforced Concrete. 1st ed. Plantation (FL): J. Ross Publishing; 2007.
Priestley, M. J. N., Verma, R., Xiao, Y. Seismic Shear Strength of Reinforced Concrete Columns. Journal of Structural Engineering, 1994; 120: 2310-2329. doi:10.1061/(ASCE)0733-9445(1994)120:8(2310).
Sezen, H., Moehle Jack, P. Shear Strength Model for Lightly Reinforced Concrete Columns. Journal of Structural Engineering, 2004; 130: 1692-1703. doi:10.1061/(ASCE)0733-9445(2004)130:11(1692).
Ohue, M., Morimoto, H., Fujii, S., Morita, S. Behavior of R.C. Short Columns Failing in Splitting Bond-shear Under Dynamic Lateral Loading. ed. Tokyo (JP): Japan Concrete Institute; 1985.
Esaki, F. Reinforcing effect of steel plate hoops on ductility of R/C square columns. In: 11th World Conference on Earthquake Engineering; 1996; Acapulco (MX). p. 196.
Li, X. Reinforced concrete columns under seismic lateral force and varying axial load (PhD Thesis). Christchurch (NZ): University of Canterbury; 1994.
Saatcioglu, M., Ozcebe, G. Response of reinforced concrete columns to simulated seismic loading. ACI Structural Journal, 1989; 86: 3-12. doi:10.14359/2607.
Yalcin, C. Seismic evaluation and retrofit of existing reinforced concrete bridge columns (PhD Thesis). Ottawa (CA): University of Ottawa; 1998.
Hirosawa, M. A list of past experimental results of reinforced concrete columns. 1st ed. Tokyo (JP): Building Research Institute Ministry of Construction; 1973.
Xiao, Y., Martirossyan, A. Seismic Performance of High-Strength Concrete Columns. Journal of Structural Engineering, 1998; 124: 241-251. doi:10.1061/(ASCE)0733-9445(1998)124:3(241).
Yoshimura, M. Formulation of post-peak behavior of old reinforced concrete columns until collapse. In: The 14th World Conference Earthquake Engineering; 2008 Oct 12–17; Beijing, China. p. 15-26.
Yoshimura, M., Takaine, Y., Nakamura, T. Collapse drift of reinforced concrete columns. Journal of Structural and Construction Engineering (Transactions of AIJ), 2003; 68: 153-160. doi:10.3130/aijs.68.153_5.
Nakamura, T., Yoshimura, M. Simulation of old reinforced concrete column collapse by pseudo-dynamic test method. In: 15th World conference on earthquake engineering; 2012 Sep 24-28; Lisbon, Portugal. p. 0-20.
Nakamura, T., Yoshimura, M. Gravity load collapse of reinforced concrete columns with decreased axial load. In: Proceedings of the 2nd European Conference on Earthquake Engineering and Seismology, Istanbul, Turkey; 2014 Aug 24-25; Istanbul, Turkey. p. 25-29.
Li, Y.-A., Huang, Y.-T., Hwang, S.-J. Seismic response of reinforced concrete short columns failed in shear. ACI Structural Journal, 2014; 111: 945-954. doi:10.14359/51686780.
Ramirez, H., Jirsa, J. O. Effect of axial load on shear behavior of short RC columns under cyclic lateral deformations. Austin (TX): University of Texas at Austin. Phil M. Ferguson Structural Engineering Laboratory; 1980. Report No.: ENV77-20816.
Bett, B., Jirsa, J., Klingner, R. Behavior of strengthened and repaired reinforced concrete columns under cyclic deformations. Austin (TX): University of Texas at Austin. Phil M. Ferguson Structural Engineering Laboratory; 1985. Report No.: 85-3.
Umehara, H. Shear strength and deterioration of short reinforced concrete columns under cyclic deformations (PhD Thesis). Austin (TX): University of Texas at Austin; 1983.
Ousalem, H., Kabeyasawa, T., Tasai, A. Evaluation of ultimate deformation capacity at axial load collapse of reinforced concrete columns. In: Proceedings of 13th world conference on earthquake engineering; 2004 Aug 1-4; Vancouver, B. C., Canada. p. 370.
Aboutaha, R. S., Engelhardt, M. D., Jirsa, J. O., Kreger, M. E. Rehabilitation of shear critical concrete columns by use of rectangular steel jackets. ACI Structural Journal, 1999; 96: 68-78. doi:10.14359/597.
Woods, C. Displacement demand effects in vulnerable reinforced concrete columns (PhD Thesis). Lawrence (KS): University of Kansas; 2010.
Boys, A., Bull, D., Pampanin, S. Seismic performance assessment of inadequately detailed reinforced concrete columns. In: 2008 New Zealand Society for Earthquake Engineering (NZSEE) Conference; 2008 Apr 11-13; Wellington, New Zealand. p. 29.
Kogoma, I., Hayashida, T., Minowa, C. Experimental studies on the collapse of RC columns during strong earthquake motions. In: 10th World Conference on Earthquake Engineering; 1992 Jul 19–24; Madrid, Spain. p. 3013-3017.
Choi, K.-K., Truong, G. T., Kim, J.-C. Seismic performance of lightly shear reinforced RC columns. Engineering Structures, 2016; 126: 490-504. doi:10.1016/j.engstruct.2016.07.060.
Ghannoum Wassim, M., Moehle Jack, P. Rotation-Based Shear Failure Model for Lightly Confined RC Columns. Journal of Structural Engineering, 2012; 138: 1267-1278. doi:10.1061/(ASCE)ST.1943-541X.0000555.
Elwood, K. J., Moehle, J. P. Dynamic collapse analysis for a reinforced concrete frame sustaining shear and axial failures. Earthquake Engineering & Structural Dynamics, 2008; 37: 991-1012. doi:10.1002/eqe.787.
Howser, R., Laskar, A., Mo, Y. Seismic interaction of flexural ductility and shear capacity in reinforced concrete columns. Structural engineering and mechanics: An international journal, 2010; 35: 593-616. doi:10.12989/sem.2010.35.5.593.
Shin, M., Choi, Y. Y., Sun, C.-H., Kim, I.-H. Shear strength model for reinforced concrete rectangular hollow columns. Engineering Structures, 2013; 56: 958-969. doi:10.1016/j.engstruct.2013.06.015.
Kowalsky, M. J., Priestley, M. N. Improved analytical model for shear strength of circular reinforced concrete columns in seismic regions. ACI Structural Journal, 2000; 97: 388-396. doi:10.14359/4633.
State of California Department of Transportation. Caltrans Version 2.0: Caltrans Seismic Design Criteria. Sacramento (CA): Caltrans; 2019.
Sadeghpour Haji, M. , Niknam, R. , & Shayanfar, J. (2026). ANN-Based Modeling of Shear Behavior of Reinforced Concrete Columns under Constant Axial Loads. Civil Engineering and Applied Solutions, 2(2), 28-48. doi: 10.22080/ceas.2025.30228.1050
MLA
Maedeh Sadeghpour Haji; Reza Niknam; Javad Shayanfar. "ANN-Based Modeling of Shear Behavior of Reinforced Concrete Columns under Constant Axial Loads", Civil Engineering and Applied Solutions, 2, 2, 2026, 28-48. doi: 10.22080/ceas.2025.30228.1050
HARVARD
Sadeghpour Haji, M., Niknam, R., Shayanfar, J. (2026). 'ANN-Based Modeling of Shear Behavior of Reinforced Concrete Columns under Constant Axial Loads', Civil Engineering and Applied Solutions, 2(2), pp. 28-48. doi: 10.22080/ceas.2025.30228.1050
CHICAGO
M. Sadeghpour Haji , R. Niknam and J. Shayanfar, "ANN-Based Modeling of Shear Behavior of Reinforced Concrete Columns under Constant Axial Loads," Civil Engineering and Applied Solutions, 2 2 (2026): 28-48, doi: 10.22080/ceas.2025.30228.1050
VANCOUVER
Sadeghpour Haji, M., Niknam, R., Shayanfar, J. ANN-Based Modeling of Shear Behavior of Reinforced Concrete Columns under Constant Axial Loads. Civil Engineering and Applied Solutions, 2026; 2(2): 28-48. doi: 10.22080/ceas.2025.30228.1050